
Extended Abstract: A Study of Red-Black SOR Parallelization Using Chapel, D
and Go Languages

Sparsh Mittal
Oak Ridge National Lab, USA, mittals@ornl.gov

1. Introduction

Successive over-relaxation (SOR) is an important iterative
solver for solving linear systems. We present parallel imple-
mentations of the red-black SOR method using three modern
programming languages, namely Chapel, D and Go. We em-
ploy the SOR method for solving a 2D steady-state heat con-
duction problem. We discuss the optimizations incorporated
and the features of these languages which are crucial for im-
proving the program performance. Experiments have been
performed using 2, 4, and 8 threads for a 4096×4096 square
grid and performance results are compared with serial execu-
tion. The analysis of results provides important insights into
the working of SOR method. These results have been pub-
lished in a journal paper and both serial and parallel source-
code in each of three languages have been made available to
the public [1, 2]. We discuss the SOR algorithm and Chapel
[3] specific details here and refer to [1] for other details.

2. Approach

The SOR method is used for solving 2D steady-state heat con-
duction problems. It involves iterative computations, where
threads executing the same code in parallel must all complete
one phase (viz. red or black) of the iteration before moving
on to the next phase (or iteration). To ensure this, a synchro-
nization barrier is used which enables worker threads to wait
until all the threads have completed a phase before any thread
continues.

Chapel specific features: In the Chapel language, we have
utilized the task-parallel construct begin along with the syn-
chronization construct sync. Using begin, the solver func-
tion is issued in an asynchronous manner, and using the sync
statement, barrier synchronization is achieved.

Optimizations for SOR code: To optimize the SOR code,
we have applied three optimizations. First, we have restruc-
tured the for-loops in a manner that if-condition checking
is minimized. This reduces the branch misprediction penalty,
which is especially large in modern processors with long
pipelines. Second, since checking for convergence requires
finding the maximum absolute error for all the cells, it be-
comes a critical section and hence requires mutex function-
ality. To avoid it, the convergence check is done in a serial
manner. Third, since generally convergence is reached after
thousands of iterations, testing for convergence at the end of
each iteration may lead to extra computations and to avoid it,
the convergence test is done only after every K (=4000 in our
experiments) iterations.

3. Experimental Results
To gain highest performance in the final run, we compiled
Chapel code with -fast flag (which also turns on the -O3

flag for the compilation of the back-end C code produced by
the Chapel compiler ). The results are presented in Table 1.
Note that it may be possible to optimize each code even fur-
ther. We compare the performance scaling of these languages
by comparing the execution time of parallel programs with
the serial program written in the same language.

Table 1: Execution time and speedup values for different lan-
guages and different number of cores

Execution time in seconds Speedup relative to serial execution
Threads Chapel D Go Chapel D Go

1 (Serial) 7538 8609 10551 - - -
2 3977 4099 5204 1.90 2.10 2.03
4 3139 3322 3834 2.40 2.59 2.75
8 2824 3141 3052 2.67 2.74 3.46

For a small number of threads (e.g. 2), the performance
scales nearly linearly (a slight variation can be attributed to
load on the host machine), however, for a large number of
threads (e.g. 8), the performance does not scale linearly. This
is due to the fact that the SOR program involves multiple itera-
tions and phases; and the synchronization required after each
phase creates a serialization bottleneck, which prevents mul-
tiple threads from progressing independently. Moreover, as
the number of cores increases, although the processing power
increases, the other resources such as cache, memory band-
width etc. do not increase linearly and hence, the program
performance does not scale linearly.

Impact of our work: The relevant paper and codes
have been viewed/downloaded more than 2000 times and
D/Go/Chapel community along with CFD (computational
fluid dynamics) researchers have shown interest in them. As
processors with many cores proliferate [4], we believe that
our approach of using HPC languages such as Chapel for
accelerating computation-intensive kernels will become even
more useful. Our future work will focus on solving the SOR
problem for 3D grids

References
[1] S. Mittal, “A Study of Successive Over-relaxation Method Paral-

lelization Over Modern HPC Languages,” IJHPCN, 2014. [Online].
Available: http://goo.gl/G5kLXt

[2] [Online]. Available: http://goo.gl/MkhkZS
[3] B. Chamberlain et al., “Parallel programmability and the Chapel lan-

guage,” IJHPCA, 2007.
[4] V. Ahuja et al., “Cache-aware affinitization on commodity multicores

for high-speed network flows,” in ANCS, 2012, pp. 39–48.

http://goo.gl/G5kLXt
http://goo.gl/MkhkZS

	Introduction
	Approach
	Experimental Results

