
Hierarchical Locale Models in Chapel

Sung-Eun Choi, David Iten, Elliot Ronaghan, Greg Titus (presenting)

Chapel Team

Cray Inc.

As HPC approaches exascale computing, processor and node architectures are gaining in both

breadth and hierarchical depth, becoming heterogeneous, and diverging rapidly both between

vendors and even across generations from a given vendor. But while it seems unavoidable that

exascale system architectures will be complicated it also seems clear that, for the sake of

programmability and portability, this complexity must be hidden from the application level.

Chapel's solution to this problem lies in hierarchical locales. Hierarchical locales allow user code

to express the architectural model to the compiler and allow mapping high-level parallel

algorithms using standard Chapel concepts down to target systems. By doing so, they shield not

only the applications but also the compiler from node architecture complexity.

Hierarchical locales are implemented in terms of locale model classes written in Chapel itself. A

locale model describes one level of the hierarchical system architecture. It identifies its place in

the hierarchy and supplies a standardized functional interface to control execution and data

placement. The code for Chapel constructs which exercise locality-oriented features—such as

allocating variables or placing tasks near the data they operate on—is emitted in terms of this

standardized interface. Chapel’s higher-level abstractions, notably distributions and domain

maps, are also written in Chapel itself and use these locality-oriented features extensively.

Application code can be expressed algorithmically in terms of the higher-level abstractions, and

without understanding the architecture itself, the compiler can use the locale models to map

those higher-level abstractions to the architecture effectively.

In this talk we introduce the notion of hierarchical locales, describe the locale model class and

the two existing implementations for flat and NUMA compute node architectures, and then

discuss current and planned work to improve our NUMA support and add a locale model for the

Intel ® Xeon Phi ™ Knight’s Landing (KNL) processor architecture.

