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This presentation may contain forward-looking statements that are 
based on our current expectations. Forward looking statements may 
include statements about our financial guidance and expected 
operating results, our opportunities and future potential, our product 
development and new product introduction plans, our ability to 
expand and penetrate our addressable markets and other 
statements that are not historical facts.  These statements are only 
predictions and actual results may materially vary from those 
projected. Please refer to Cray's documents filed with the SEC from 
time to time concerning factors that could affect the Company and 
these forward-looking statements. 

 Safe Harbor Statement

 2



C O M P U T E      |      S T O R E      |      A N A L Y Z E

The Memory Consistency Model Effort
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● Philosophically: 
● The memory model 

already exists 
● We're just writing it down
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Philosophy of the MCM Effort
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● The memory model 
already exists 
● in example programs 
● in developer's minds 

● We're just writing it down
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Outline
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● Example Constructions 

● Learning from History 

● The Model
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Example Constructions
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Design Goal 1
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Sequential programs work in program order: 
var x:int; 
x = 1; 
x = 2; 
writeln(x); 

should always output 2. 

Note: 
•  CHARM++, OpenSHMEM don't follow this rule 
•  UPC, C, Java, Fortran do
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Design Goal 2
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Task constructs create additional dependencies: 
var x:int; 
x = 50; 
coforall i in 1..4 { 
  writeln(x + i); 
} 

should always output a permutation of 

 51 52 53 54 

in other words, x is always 50 in each task.



C O M P U T E      |      S T O R E      |      A N A L Y Z E
Copyright 2015 Cray Inc.

Design Goal 3
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Remote memory has the same memory 
consistency rules as local memory: 
var x: int;  
on Locales[1] { 
  x = 1; 
  x = 2; 
  writeln(x); 
} 

should always output 2. 

Enables separation of algorithm from data 
layout.
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Design Goal 4
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The memory model should not inhibit common 
optimizations: 
var x: int = 0; 
cobegin ref(x) { 
  { while x==0 {/*wait*/} } 
  { x = 1; } 
} 

Has undefined behavior since there is a data 
race on variable x. Probably won't terminate. 

In other words, the programmer must identify 
variables used to synchronize tasks. Need: 
var x: atomic int;    or 
var x: sync int;
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Learning from History

In
te

rn
et

 A
rc

hi
ve

 - 
N

at
ur

al
 H

is
to

ry
 o

f t
he

 a
ni

m
al

 k
in

gd
om

 fo
r t

he
 u

se
 o

f y
ou

ng
 p

eo
pl

e



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Defining Racy Program Behavior
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● Some specifications tried 
to define behavior for racy 
programs 

→ inhibits optimization 
→ usually wrong 
● Java 
● circa 1996 
● fixed now 

● UPC 
● attempted fix
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Impossible Implementation
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● shared strict variables can synchronize processes 
→ each shared strict variable must be atomic 
● any type can be shared strict 
→ a shared strict variable could be 64KB! 
● but RDMA can't possible be atomic for a 64KB type! 
● and shared strict casts to local ptr → no locks! 
→ in practice, shared strict only works for small types
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Internet Archive 
from Andrea Palladio, his life and works

SC for DRF: The Big House

C11, C++11, Java, UPC, Fortran 2008
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Start with C++11 MCM

● At a high level: 
sequentially consistent 
behavior for data race 
free programs 

● other things are 
possible with order= 
arguments for atomic 
operations 
● relaxed 
● acquire 
● release ...
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Enhance for Chapel

● local and remote data 
have same rules 

● task constructs (e.g. 
cobegin) influence 
program order 

● planned support for 
explicit unordered 
operations
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var x:int; 

x = 1; 
x = 2; 
writeln(x); 

→ 2

var x:int; 
x = 50; 
coforall i in 1..4 { 
  writeln(x + i); 
} 

→ permutation of 51 52 53 54

var x: int;  
on Locales[1] { 
  x = 1; 
  x = 2; 
  writeln(x); } 

→ 2

var x: int = 0; 
cobegin ref(x) { 
  { while x==0 {} } 
  { x = 1; } 
} 

→ undefined behavior
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