
C O M P U T E | S T O R E | A N A L Y Z E

The Chapel Memory Consistency Model

Michael Ferguson
Sung-Eun Choi
Elliot Ronaghan

Greg Titus
Cray Inc.

June 13, 2015

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements may
include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

 Safe Harbor Statement

 2

C O M P U T E | S T O R E | A N A L Y Z E

The Memory Consistency Model Effort

 3

● Philosophically:
● The memory model

already exists
● We're just writing it down

C O M P U T E | S T O R E | A N A L Y Z E

Philosophy of the MCM Effort

 4

● The memory model
already exists
● in example programs
● in developer's minds

● We're just writing it down

P
ro

lo
gu

e
of

 th
e

C
od

e
of

 H
am

m
ur

ab
i,

Lo
uv

re
 M

us
eu

m

P
ho

to
 b

y
M

ar
ie

-L
an

 N
gu

ye
n

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Outline

 5

● Example Constructions

● Learning from History

● The Model

Th
e

In
te

rn
et

 A
rc

hi
ve

: T
he

 H
is

to
ria

n'
s

H
is

to
ry

 o
f t

he
 W

or
ld

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

 6

Example Constructions

U
S

N
at

io
na

l A
rc

hi
ve

s.
 T

re
as

ur
y

Bu
ild

in
g

co
ns

tr
uc

tio
n

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Design Goal 1

 7

In
te

rn
et

 A
rc

hi
ve

 /
19

10
 E

nc
yc

lo
pe

di
a

B
rit

an
ni

ca
 "T

he
 It

al
ia

n
O

rd
er

s"

Sequential programs work in program order:
var x:int;
x = 1;
x = 2;
writeln(x);

should always output 2.

Note:
• CHARM++, OpenSHMEM don't follow this rule
• UPC, C, Java, Fortran do

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Design Goal 2

 8

In
te

rn
et

 A
rc

hi
ve

 /
19

10
 E

nc
yc

lo
pe

di
a

B
rit

an
ni

ca
 "T

he
 It

al
ia

n
O

rd
er

s"

Task constructs create additional dependencies:
var x:int;
x = 50;
coforall i in 1..4 {
 writeln(x + i);
}

should always output a permutation of

 51 52 53 54

in other words, x is always 50 in each task.

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Design Goal 3

 9

In
te

rn
et

 A
rc

hi
ve

 /
19

10
 E

nc
yc

lo
pe

di
a

B
rit

an
ni

ca
 "T

he
 It

al
ia

n
O

rd
er

s"

Remote memory has the same memory
consistency rules as local memory:
var x: int;
on Locales[1] {
 x = 1;
 x = 2;
 writeln(x);
}

should always output 2.

Enables separation of algorithm from data
layout.

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Design Goal 4

 10

In
te

rn
et

 A
rc

hi
ve

 /
19

10
 E

nc
yc

lo
pe

di
a

B
rit

an
ni

ca
 "T

he
 It

al
ia

n
O

rd
er

s"

The memory model should not inhibit common
optimizations:
var x: int = 0;
cobegin ref(x) {
 { while x==0 {/*wait*/} }
 { x = 1; }
}

Has undefined behavior since there is a data
race on variable x. Probably won't terminate.

In other words, the programmer must identify
variables used to synchronize tasks. Need:
var x: atomic int; or
var x: sync int;

C O M P U T E | S T O R E | A N A L Y Z E
 11

Li
br

ar
y

of
 C

on
gr

es
s

Learning from History

C O M P U T E | S T O R E | A N A L Y Z E
 12

Li
br

ar
y

of
 C

on
gr

es
s

Learning from History

In
te

rn
et

 A
rc

hi
ve

 -
N

at
ur

al
 H

is
to

ry
 o

f t
he

 a
ni

m
al

 k
in

gd
om

 fo
r t

he
 u

se
 o

f y
ou

ng
 p

eo
pl

e

C O M P U T E | S T O R E | A N A L Y Z E

Defining Racy Program Behavior

 13

● Some specifications tried
to define behavior for racy
programs

→ inhibits optimization
→ usually wrong
● Java
● circa 1996
● fixed now

● UPC
● attempted fix

Ta
sm

an
ia

n
A

rc
hi

ve
s

an
d

H
er

ita
ge

 O
ffi

ce

Le
af

y
S

ea
 D

ra
go

n
sk

et
ch

 b
y

W
ill

ia
m

 B
ue

lo
w

 G
ou

ld

C O M P U T E | S T O R E | A N A L Y Z E

Impossible Implementation

 14

● shared strict variables can synchronize processes
→ each shared strict variable must be atomic
● any type can be shared strict
→ a shared strict variable could be 64KB!
● but RDMA can't possible be atomic for a 64KB type!
● and shared strict casts to local ptr → no locks!
→ in practice, shared strict only works for small types

Ta
sm

an
ia

n
A

rc
hi

ve
s

an
d

H
er

ita
ge

 O
ffi

ce

S
aw

 s
ha

rk
 s

ke
tc

h
by

 W
ill

ia
m

 B
ue

lo
w

 G
ou

ld

C O M P U T E | S T O R E | A N A L Y Z E
 15

Internet Archive
from Andrea Palladio, his life and works

SC for DRF: The Big House

C11, C++11, Java, UPC, Fortran 2008

C O M P U T E | S T O R E | A N A L Y Z E
 16

Start with C++11 MCM

● At a high level:
sequentially consistent
behavior for data race
free programs

● other things are
possible with order=
arguments for atomic
operations
● relaxed
● acquire
● release ...

Li
br

ar
y

of
 C

on
gr

es
s

C O M P U T E | S T O R E | A N A L Y Z E
 17

Enhance for Chapel

● local and remote data
have same rules

● task constructs (e.g.
cobegin) influence
program order

● planned support for
explicit unordered
operations

flic
kr

 u
se

r A
nd

y
H

ay
, T

em
pl

e
of

 V
es

ta

C
C

 b
y

2.
0

ht
tp

s:
//c

re
at

ive
co

m
m

on
s.

or
g/

lic
en

se
s/

by
/2

.0
/

https://creativecommons.org/licenses/by/2.0/

C O M P U T E | S T O R E | A N A L Y Z E

Questions?

 18

var x:int;

x = 1;
x = 2;
writeln(x);

→ 2

var x:int;
x = 50;
coforall i in 1..4 {
 writeln(x + i);
}

→ permutation of 51 52 53 54

var x: int;
on Locales[1] {
 x = 1;
 x = 2;
 writeln(x); }

→ 2

var x: int = 0;
cobegin ref(x) {
 { while x==0 {} }
 { x = 1; }
}

→ undefined behavior

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any
intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL,
CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following
system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

 19

https://github.com/chapel-lang/chapel/http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://sourceforge.net/projects/chapel/
http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

