
Innovative solutions for a safer, better world BUILDING STRONG®

A Preliminary Performance
Comparison of Chapel to MPI and MPI/

OpenMP

Laura Brown
US Army Corps of Engineers Engineer Research and

Development Center, Vicksburg, MS
CHIUW 2015, Portland, OR

13 June 2015

Innovative solutions for a safer, better world BUILDING STRONG®

Overview

§  Background/Motivation
§  Methodology
§  Coding
§  Results
§  Conclusions
§  Work Left To Do
§  Acknowledgements

Innovative solutions for a safer, better world BUILDING STRONG®

Background/Motivation
§  As the DoD HPC community works towards petascale

and exascale computing, we face several challenges as
users scale codes to larger core counts
►  Inefficient programming techniques
►  Inefficient memory utilization
►  Increased communication overhead

§  We are exploring Chapel, along with other HPCS and
PGAS languages, to determine
►  Does this parallel language have the potential capability to

perform more efficiently than (or at least as well as) MPI or MPI/
OpenMP as core counts increase?

►  Does this parallel language have the potential to be adopted by
the HPCMP user community?

Innovative solutions for a safer, better world BUILDING STRONG®

Methodology
§  Translate a small, practical program into Chapel

►  Iterative Conjugate gradient using diagonal sparse matrix storage format
►  Originally written in Fortran

§  Execute at 6 different processor counts…
►  4 nodes/128 cores
►  16 nodes/512 cores
►  32 nodes/1024 cores
►  64 nodes/2048 cores
►  128 nodes/4096 cores
►  256 nodes/8192 cores

§  … with 4 different matrix problem sizes
►  150 x 150
►  1000 x 1000
►  10000 x 10000
►  20000 x 20000

§  Compare results with observed performance of existing versions
►  Serial
►  MPI with 1-D decomposition
►  MPI/OpenMP with 1-D decomposition

Innovative solutions for a safer, better world BUILDING STRONG®

Methodology
§  All runs were performed on GARNET at ERDC DSRC in Vicksburg,

MS
►  Cray XE6
►  2 16-core 2.5 GHz AMD Interlagos chips per node (32 procs/node)

•  2 GB memory per core (64 GB per node)
►  Gemini interconnect
►  Cray Compiler Environment
►  Chapel version 1.10.0

Innovative solutions for a safer, better world BUILDING STRONG®

Coding

§  MPI-style domain decomposition replaced with a
single dmapped distributed array for each array of
coefficients
► All distributed arrays declared over the same domain

Innovative solutions for a safer, better world BUILDING STRONG®

Coding

Innovative solutions for a safer, better world BUILDING STRONG®

Coding
§  Concurrency handled via forall loops

Innovative solutions for a safer, better world BUILDING STRONG®

Results

§  Size of each implementation
► Serial: 394 LOC
► MPI: 492 LOC
► MPI/OpenMP: 525 LOC
► Chapel: 256 LOC

Innovative solutions for a safer, better world BUILDING STRONG®

Results

0

50

100

150

200

250

300

0 150 300 450 600 750 900

Ti
m

e
to

 S
ol

ut
io

n
(s

ec
)

Grid size

Chapel Performance at Increasing Node Counts

CHAPEL @ 16 nodes CHAPEL @ 4 nodes SERIAL

Innovative solutions for a safer, better world BUILDING STRONG®

Results

0

50

100

150

200

0 150 300 450 600 750 900

Ti
m

e
to

 S
ol

ut
io

n
(s

ec
)

Grid size

Chapel vs. MPI and MPI/OpenMP at 4 nodes

CHAPEL MPI MPI/OpenMP SERIAL

Innovative solutions for a safer, better world BUILDING STRONG®

Results

0

5

10

15

20

25

30

0 150 300 450 600 750 900

Ti
m

e
to

 S
ol

ut
io

n
(s

ec
)

Grid size

Chapel vs. MPI and MPI/OpenMP at 4 nodes (zoomed)

CHAPEL MPI MPI/OpenMP SERIAL

Innovative solutions for a safer, better world BUILDING STRONG®

Results

0

50

100

150

200

250

300

0 150 300 450 600 750 900

Ti
m

e
to

 S
ol

ut
io

n
(s

ec
)

Grid size

Chapel vs. MPI and MPI/OpenMP at 16 nodes

CHAPEL MPI MPI/OpenMP SERIAL

Innovative solutions for a safer, better world BUILDING STRONG®

Results

0

5

10

15

20

25

30

0 150 300 450 600 750 900

Ti
m

e
to

 S
ol

ut
io

n
(s

ec
)

Grid size

Chapel vs. MPI and MPI/OpenMP at 16 nodes (zoomed)

CHAPEL MPI MPI/OpenMP SERIAL

Innovative solutions for a safer, better world BUILDING STRONG®

Results

§  What’s going on?
► Chapel does not scale well (for this code)!

•  Increasing the number of nodes increases the runtime,
regardless of problem size

•  Increasing the problem size increases the runtime at an
exponential rate

 With 4 nodes

**Timed out after 12 hours

NX NY RUNTIME
(sec)

150 150 4.64201
1000 1000 183.006
10000 10000 43200+**

Innovative solutions for a safer, better world BUILDING STRONG®

Results
§  What’s going on?

►  Contacted Ben Harshbarger and Brad Chamberlain (Cray) in
order to determine the issue

►  Updating compiler versions (in this case, from 1.9.0 to 1.10.0)
and adding compiler optimization flags positively impacted
performance

►  We determined that the main factor impacting performance was
the use of Chapel’s implementation of reductions (can be used in
manner equivalent to mpi_allreduce)

•  Example: err = + reduce p_err;
►  There are 6 instances of reduce in this code. Two of them

occur within the main iteration loop
•  The number of times this iteration loop executes increases as the

problem size increases
w  150x150: 314 iterations
w  1000x1000: 1934 iterations
w  10000x10000: 18133 iterations
w  20000x20000: 35690 iterations

•  As problem size increases, runtime becomes dominated
by these reductions

Innovative solutions for a safer, better world BUILDING STRONG®

Conclusions, currently

§  Chapel is not ready for our use in a production
environment
►  Developers are working to modify/add features to make

language more useful to average user, but they’re not there yet.
►  Documentation/tutorials can be an unorganized mixture of useful

and outdated
•  Direct guidance from Chapel developers was extremely helpful, but

not every user would have access to this
►  Even with code-tuning assistance, Chapel does not impress

when compared to MPI and MPI/OpenMP
•  Does not seem to scale well with large problem sizes or large core

counts
•  While Chapel itself is easy to read/use, will our code developers

want to spend the effort learning/implementing a new programming
language only to get similar or worse results than with
MPI?

Innovative solutions for a safer, better world BUILDING STRONG®

Conclusions, currently

§  However…
►  As a language, Chapel is clean, concise and easy to understand

(even after parallelization is implemented)
•  This could attract portions of our user base starting new coding projects

► Once the performance improves, others looking to get
gains from existing Fortran/C/C++ with MPI could
follow

Innovative solutions for a safer, better world BUILDING STRONG®

Work Left to Do
§  Rerun tests with Chapel v.1.11.0
§  When able, make changes necessary to Chapel

code in order to increase performance

Innovative solutions for a safer, better world BUILDING STRONG®

Acknowledgements
§  DoD High Performance Computing

Modernization Program (HPCMP)
► This work was performed using computer time from

the DoD HPCMP at the ERDC DoD Supercomputing
Resource Center (DSRC).

§  Ben Harshbarger and Brad Chamberlain (Cray)
for Chapel support

