A Preliminary Performance
Comparison of Chapel to MPI and MPI/
OpenMP

Laura Brown

US Army Corps of Engineers Engineer Research and
Development Center, Vicksburg, MS

CHIUW 2015, Portland, OR
13 June 2015

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Overview

Background/Motivation
Methodology

Coding

Results

Conclusions

Work Left To Do

Acknowledgements

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Background/Motivation

= As the DoD HPC community works towards petascale
and exascale computing, we face several challenges as
users scale codes to larger core counts
» Inefficient programming techniques
» Inefficient memory utilization
» Increased communication overhead

= We are exploring Chapel, along with other HPCS and
PGAS languages, to determine

» Does this parallel language have the potential capability to
perform more efficiently than (or at least as well as) MPI or MPI/
OpenMP as core counts increase?

» Does this parallel language have the potential to be adopted by
the HPCMP user community?

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Methodology

Translate a small, practical program into Chapel
» lterative Conjugate gradient using diagonal sparse matrix storage format

» Originally written in Fortran

Execute at 6 different processor counts...
» 4 nodes/128 cores

16 nodes/512 cores

32 nodes/1024 cores

64 nodes/2048 cores

128 nodes/4096 cores

256 nodes/8192 cores

... with 4 different matrix problem sizes
» 150 x 150
» 1000 x 1000
» 10000 x 10000
» 20000 x 20000

vvyyvyvyy

Compare results with observed performance of existing versions

» Serial
MPI with 1-D decomposition

MPI/OpenMP with 1-D decomposition

ERDC

BUILDING STRONG

Innovative solutions for a safer, better world

Methodology

= All runs were performed on GARNET at ERDC DSRC in Vicksburg,
MS
» Cray XE6

» 2 16-core 2.5 GHz AMD Interlagos chips per node (32 procs/node)
+ 2 GB memory per core (64 GB per node)

» Gemini interconnect

» Cray Compiler Environment

» Chapel version 1.10.0

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Coding

= MPI-style domain decomposition replaced with a
single dmapped distributed array for each array of
coefficients

» All distributed arrays declared over the same domain

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Coding

allocate (ac(n), ae(n), an(n), aw(n), as(n), rhs(n),
& 1 - nx:n + nx), wksp(3*n + 2*nx), stat = istat)

nstore = (10*n + 4*%*nx)*nbytef
if (istat .ne. 0) then

write (6 110) nstore, nyl, istat

call mpi_finalize (mp1err)

stop
endif
call mpi_reduce (nstore, maxmem, 1, mpi_integer,

mpi_max, O, comm, mpierr)

C
C ... set number of processors.
C
c$ call omp_set_num_threads (nthreads) /% ac, ae, an, aw, as, rhs, u, wksp all dmapped */
. . const Prob1emSpace domain(1) dmapped Block({1l..n}) = {1..n};
g§gmp ggra]1E1 default (shared) private (i) const USpace = Problemspace.expand(nx);
g doi=1,n
ac(i) = 4.0do .
ae(i) = -1.0do /% INITIAL ARRAY ALLOCATION ¥/
an(i) = -1.0do var p_err: [Problemspace] real = 0.0;
aw(i) = -1.0do var ac: [ProblemsSpace] real = 4.0;
as(i) = -1.0do var ae: [ProblemSpace] real = -1.0;
enddo var an: [Problemspace] real = -1.0;
cSomp do var aw: [ProblemSpace] real = -1.0;
do i = nx, n, nx var as: [Problemspace] real = -1.0;
ae(i) = 0.0d0 var rhs: [ProblemSpace] real = 0.0;

enddo

cSomp end do nowait var u: [Uspace] real = 0.0;

;f (myid .eq. (nprocs - 1)) then

cSomp
do ;na;‘ - 8"030 » n /% SERIAL ARRAY INITALIZATION PORTION - DIAGONAL SPARSE MATRIX*/
enddo for i in nx..n by nx do ae[i] = 0.0;
cSomp end do nowait .. .
endif for i in n-nx+1..n do an[i] = 0.0;
c$omp do for i in 1..(n-nx+1) by nx do aw[i] = 0.0;

doi=1,n-nx+ 1, nx

aw(i) = 0.0do for i in 1..nx do as[i] = 0.0;

enddo
c$omp end do nowait
if (myid .eq. 0) then /% PARALLEL INITIALIZATION OF RHS ¥/
cSomp do rhs = ac + ae + an + aw + as;
doi=1, nx
as(i) = 0.0do
enddo
c$omp end do nowait
endif
cSomp do
doi=1-nx, n+ nx
u(i) = 0.0do
enddo
cSomp do

i 2 ac(i) + ae(i) + an(i) + aw(i) + as(i)
enddo
c$omp end parallel

BUILDING STRONG, Innovative solutions for a safer, better world

Coding

= Concurrency handled via forall loops

[aNaNal

if (m¥ .1t. (nprocs - 1))
1 mpi_sendrecv (u(n -

u(n +

& comm,

endif
if (m¥ .gt. 0) then
1 mp1 sendrecv (u(1),
u(l -
& comm,
endif

bsum = 0.0d0
gamma_ = 0.0d0

. Compute initial residual, residual norm, and rhs norm.

then

nx + 1), nx, mpi_r, myid + 1, 0,

1), nx, mpi_r, myid + 1, 1,
stat, mpierr)
nx, mpi_r, myid - 1, 1,

nx), nx, mpi_r, myid - 1, 0,
stat, mpierr)

c$omp parallel default (shared) private (i)

cSomp do reduction(+:bsum,gamma)
do i 1, n

r(i)

& -
bsum =
amma

enddo

end Eara11e1

sendbuf (1) bsum

sendbuf(z) = gamma

call mpi_allreduce (sendbuf,

bsum + rhs(i)**2
gamma + r(i)**2

c$omp

rhs(i) - ac(i)*u(i)
ae()*u@i + 1) - an(i)*u(+ nx)
aw(i)*u(i - 1) - as(i)*u(- nx)

recvbuf, 2, mpi_r, mpi_sum,

comm, mp1err)

bsum = recvbuf (1)
amma = recvbuf(2)
norm = sqrt (bsum)

®

forall i in pProblemspace {
r(i) = rhs(i) - ac(i)*u(@) - ae(i)*u(i+1l) - an(i)*u(i+nx)
- aw()*u(i-1) - as()*u(-nx);
p_gamma(i) = r(i)*=2;
p_bsum(i) = rhs(i)**%2;
gamma = 0.0;
amma = + reduce p_gamma;
sum = + reduce p_bsum;
bnorm = sqrt(bsum);

ERDC

BUILDING STRONG,

Innovative solutions for a safer, better world

Results

= Size of each implementation
» Serial: 394 LOC
» MPI: 492 LOC
» MPI/OpenMP: 525 LOC
» Chapel: 256 LOC

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

300

250

N
o
o

150

Time to Solution (sec)

RN
o
o

50

0
0

Results

Chapel Performance at Increasing Node Counts

150 300 450 600 750
Grid size

900
=¢=CHAPEL @ 16 nodes =#—CHAPEL @ 4 nodes =>=SERIAL E‘ E DC

BUILDING STRONG

Innovative solutions for a safer, better world

Results

Chapel vs. MPI and MPI/OpenMP at 4 nodes

200
X 4
150
m
(V]
)
c
9
5
3 100
0
£
(V]
£
E
50
B
0 150 300 450 600 750 900

Grid size

—¢=CHAPEL =#=MP| ==MP|/OpenMP =>=SERIAL ER DC

®

BUILDING STRONG, Innovative solutions for a safer, better world

30

25

Time to Solution (sec)
o S

=
o

®

Results

Chapel vs. MPI and MPI1/OpenMP at 4 nodes (zoomed)

150 300 450 600 750 900
Grid size

=o=CHAPEL =@—~MP| ==+=MPI|/OpenMP =>¢=SERIAL ERDC

BUILDING STRONG Innovative solutions for a safer, better world

300

250

N
o
o

150

Time to Solution (sec)

=\
o
o

50

Results

Chapel vs. MPI and MPI/OpenMP at 16 nodes

—_—
3
D —————— -\
150 300 450 600 750 900
Grid size

=+=CHAPEL =#~MP| =+=MPI|/OpenMP =¢=SERIAL ERDC

BUILDING STRONG

Innovative solutions for a safer, better world

Results

Chapel vs. MPI and MPI/OpenMP at 16 nodes (zoomed)

30

25

Time to Solution (sec)
o S

=
o

0

®

300 450 600 750 900
Grid size

=o=CHAPEL =@~MP| =2=MPI|/OpenMP =>¢=SERIAL ERDC

BUILDING STRONG

Innovative solutions for a safer, better world

Results

= What's going on?
» Chapel does not scale well (for this code)!

* Increasing the number of nodes increases the runtime,
regardless of problem size

* Increasing the problem size increases the runtime at an
exponential rate

150 150 4.64201
1000 1000 183.006
10000 10000 43200+**

**Timed out after 12 hours

il ERDC

Innovative solutions for a safer, better world

BUILDING STRONG

Results

= What's going on?
» Contacted Ben Harshbarger and Brad Chamberlain (Cray) in
order to determine the issue

» Updating compiler versions (in this case, from 1.9.0 to 1.10.0)
and adding compiler optimization flags positively impacted
performance

» We determined that the main factor impacting performance was

the use of Chapel’'s implementation of reductions (can be used in
manner equivalentto mpi allreduce)

« Example: err = + reduce p err;

» There are 6 instances of reduce in this code. Two of them
occur within the main iteration loop
» The number of times this iteration loop executes increases as the
problem size increases

> 150x150: 314 iterations

> 1000x1000: 1934 iterations

> 10000x10000: 18133 iterations

> 20000x20000: 35690 iterations

» As problem size increases, runtime becomes dominated R
@ by these reductions E DC

BUILDING STRONG Innovative solutions for a safer, better world

Conclusions, currently

= Chapel is not ready for our use in a production
environment
» Developers are working to modify/add features to make
language more useful to average user, but they're not there yet.

» Documentation/tutorials can be an unorganized mixture of useful
and outdated

» Direct guidance from Chapel developers was extremely helpful, but
not every user would have access to this

» Even with code-tuning assistance, Chapel does not impress
when compared to MPIl and MPIl/OpenMP

* Does not seem to scale well with large problem sizes or large core
counts

* While Chapel itself is easy to read/use, will our code developers
want to spend the effort learning/implementing a new programming

language only to get similar or worse results than with
e ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Conclusions, currently

= However...

» As a language, Chapel is clean, concise and easy to understand
(even after parallelization is implemented)
» This could attract portions of our user base starting new coding projects

» Once the performance improves, others looking to get
gains from existing Fortran/C/C++ with MPI could
follow

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Work Left to Do

»= Rerun tests with Chapel v.1.11.0

= When able, make changes necessary to Chapel
code in order to increase performance

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

Acknowledgements

= DoD High Performance Computing
Modernization Program (HPCMP)

» This work was performed using computer time from
the DoD HPCMP at the ERDC DoD Supercomputing
Resource Center (DSRC).

= Ben Harshbarger and Brad Chamberlain (Cray)
for Chapel support

il ERDC

BUILDING STRONG Innovative solutions for a safer, better world

