
C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel Boot Camp
(Everything you need to know about Chapel to understand CHIUW 2015*)

Brad Chamberlain, Cray Inc.

June 13, 2015
CHIUW 2015

* that I could cram into 30 minutes

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel Motivation

2

Q: Why doesn’t parallel programming have an equivalent to
Python / Matlab / Java / C++ / (your favorite programming language here) ?
●  one that makes it easy to quickly get codes up and running
●  one that is portable across system architectures and scales
●  one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical
challenge, but rather a lack of sufficient…
…long-term efforts
…resources
…community will
…co-design between developers and users
…patience

Chapel is an attempt to break this trend

Copyright 2015 Cray Inc.

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

What is Chapel?

Copyright 2015 Cray Inc.
3

● An emerging parallel programming language
●  Design and development led by Cray Inc.

●  in collaboration with academia, labs, industry; domestically & internationally

● A work-in-progress

● Goal: Improve productivity of parallel programming

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2015 Cray Inc.
4

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations
 without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
 without taking away the control that HPC programmers need,
 implemented in a language as attractive as recent graduates want.”

want full control
 to ensure performance”

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel's Implementation

Copyright 2015 Cray Inc.
5

● Being developed as open source at GitHub
●  Licensed as Apache v2.0 software

● Portable design and implementation, targeting:
●  multicore desktops and laptops
●  commodity clusters and the cloud
●  HPC systems from Cray and other vendors
●  in-progress: manycore processors, CPU+accelerator hybrids, …

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
6

ü Chapel Motivation and Background
Ø Chapel in a Nutshell
● Chapel Project: Past, Present, Future
● Chapel Resources

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E
7

Multiresolution Design: Support multiple tiers of features
●  higher levels for programmability, productivity
●  lower levels for greater degrees of control

●  build the higher-level concepts in terms of the lower
●  permit the user to intermix layers arbitrarily

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2015 Cray Inc.

Multiresolution Design

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E
8

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2015 Cray Inc.

Lower-Level Features

Lower-level Chapel

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Base Language

9

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2015 Cray Inc.

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Base Language

10

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2015 Cray Inc.

CLU-style iterators CLU-style iterators

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Base Language

11

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2015 Cray Inc.

Static Type Inference for:
•  arguments
•  return types
•  variables

Static Type Inference for:
•  arguments
•  return types
•  variables

Static Type Inference for:
•  arguments
•  return types
•  variables

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Base Language

12

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2015 Cray Inc.

range types and
operators

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Base Language

13

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2015 Cray Inc.

swap operator

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Base Language

14

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2015 Cray Inc.

zippered iteration

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Base Language

15

iter fib(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for (i,f) in zip(0..#n, fib(n)) do
 writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2015 Cray Inc.

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Task Parallelism, Locality

Copyright 2015 Cray Inc.
16

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Task Parallelism, Locality

Copyright 2015 Cray Inc.
17

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-­‐Level	

Task	
 Parallelism	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Task Parallelism, Locality

Copyright 2015 Cray Inc.
18

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstrac9on	
 of	

System	
 Resources	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Task Parallelism, Locality

Copyright 2015 Cray Inc.
19

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

Locality/Affinity	
 Control	

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Task Parallelism, Locality

Copyright 2015 Cray Inc.
20

taskParallel.chpl	

coforall loc in Locales do
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n "+
 "running on %s\n",

 tid, numTasks, here.name);
 }

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E
21

Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2015 Cray Inc.

Higher-Level Features

Higher-level Chapel

Domain Maps
Data Parallelism

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Data Parallelism

Copyright 2015 Cray Inc.
22

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel --numLocales=4 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Data Parallelism

Copyright 2015 Cray Inc.
23

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel --numLocales=4 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	
 Domains	
 (First-­‐Class	
 Index	
 Sets)	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Data Parallelism

Copyright 2015 Cray Inc.
24

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel --numLocales=4 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

Arrays	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Data Parallelism

Copyright 2015 Cray Inc.
25

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel --numLocales=4 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

Data-­‐Parallel	
 Forall	
 Loops	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Data Parallelism

Copyright 2015 Cray Inc.
26

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel --numLocales=4 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

Domain	
 Maps	
 (Map	
 Data	

Parallelism	
 to	
 the	
 System)	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel in a Nutshell: Data Parallelism

Copyright 2015 Cray Inc.
27

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel --numLocales=4 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
 dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl	

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2015 Cray Inc.
28

●  This is a parallel, but local program:
begin writeln(“Hello world!”);
writeln(“Goodbye!”);

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2015 Cray Inc.
29

●  This is a parallel, but local program:

●  This is a distributed, but serial program:
writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
writeln(“Goodbye from locale 0!”);

begin writeln(“Hello world!”);
writeln(“Goodbye!”);

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2015 Cray Inc.
30

●  This is a parallel, but local program:

●  This is a distributed, but serial program:

●  This is a distributed, parallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
writeln(“Goodbye from locale 0!”);

begin writeln(“Hello world!”);
writeln(“Goodbye!”);

begin on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do begin writeln(“Hello from locale 2!”);
writeln(“Goodbye from locale 0!”);

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
31

ü Chapel Motivation and Background
ü Chapel in a Nutshell
Ø Chapel Project: Past, Present, Future
● Chapel Resources

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel’s Origins: HPCS

Copyright 2015 Cray Inc.
32

DARPA HPCS: High Productivity Computing Systems
●  Goal: improve productivity by a factor of 10x
●  Timeframe: Summer 2002 – Fall 2012
●  Cray developed a new system architecture, network, software stack…

●  this became the very successful Cray XC30™ Supercomputer Series

 …and a new programming language: Chapel

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel under HPCS: Major Successes

Copyright 2015 Cray Inc.
33

Clean, general parallel language design

●  unified data-, task-, concurrent-, nested-parallelism
●  distinct concepts for parallelism and locality
●  multiresolution language design philosophy

SSCA#2 demonstration on the prototype Cray XC30
●  unstructured graph compact application
●  clean separation of computation from data structure choices
●  fine-grain latency-hiding runtime
●  use of Cray XC30™ network AMOs via Chapel’s ‘atomic’ types
●  ran on full-scale demo system for significant amount of time

Portable design and implementation
●  while still being able to take advantage of Cray-specific features

Revitalization of Community Interest in Parallel Languages
●  HPF-disenchantment became interest, cautious optimism, enthusiasm

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel under HPCS: Shortcomings

34

Performance was hit-or-miss (and mostly “miss” at scale)
●  a litmus test for the HPC community

Focused on a narrow set of benchmarks (mostly SSCA#2)
●  several key idioms and language features were neglected

Contract milestones were set too far in advance
●  unable to respond effectively to needs of real users
●  changes required contract renegotiations

Insufficient focus on emerging node architectures
●  unable to effectively leverage NUMA nodes, GPUs

Didn’t get over the tipping point of adoption
●  but, we got far enough to make it to the next level…

Copyright 2013 Cray Inc.

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel’s 5-year push

Copyright 2015 Cray Inc.
35

● Based on positive user response to Chapel under HPCS,
Cray undertook a five-year effort to improve it
●  we’ve just completed our second year

●  Focus Areas:
1.  Improving performance and scaling
2.  Fixing immature aspects of the language and implementation

●  e.g., strings, memory management, error handling, …

3.  Porting to emerging architectures
●  Intel Xeon Phi, accelerators, heterogeneous processors and memories, …

4.  Improving interoperability
5.  Growing the Chapel user and developer community

●  including non-scientific computing communities

6.  Exploring transition of Chapel governance to a neutral, external body

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

The Chapel Team at Cray

Copyright 2015 Cray Inc.
36

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Chapel is a Collaborative, Community Effort

Copyright 2015 Cray Inc.
37

(and many others as well, some of which you will hear from today…)

http://chapel.cray.com/collaborations.html

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

A Year in the Life of Chapel

Copyright 2015 Cray Inc.
38

●  Two major releases per year (April / October)
●  ~a month later: detailed release notes

● SC (Nov)
●  annual Lightning Talks BoF featuring talks from the community
●  annual CHUG happy hour
●  plus tutorials, panels, BoFs, posters, educator sessions, exhibits, …

● CHIUW: Chapel Implementers and Users Workshop (May/June)
●  kicked off May 2014 at IPDPS

●  Talks, tutorials, research visits, blogs, … (year-round)

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
39

ü Chapel Motivation and Background
ü Chapel in a Nutshell
ü Chapel Project: Past, Present, Future
Ø Chapel Resources

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Suggested Reading

Copyright 2015 Cray Inc.
40

Overview Papers:
●  A Brief Overview of Chapel, Chamberlain (early draft of a chapter for

A Brief Overview of Parallel Programming Models, edited by Pavan
Balaji, to be published by MIT Press in 2015).
●  a detailed overview of Chapel’s history, motivating themes, features

●  The State of the Chapel Union [slides], Chamberlain, Choi, Dumler,
Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013.
●  a higher-level overview of the project, summarizing the HPCS period

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Lighter Reading

Copyright 2015 Cray Inc.
41

Blog Articles:
●  Chapel: Productive Parallel Programming, Cray Blog, May 2013.

●  a short-and-sweet introduction to Chapel

●  Why Chapel? (part 1, part 2, part 3), Cray Blog, June-October 2014.
●  a recent series of articles answering common questions about why we are

pursuing Chapel in spite of the inherent challenges

●  [Ten] Myths About Scalable Programming Languages,
IEEE TCSC Blog (index available on chapel.cray.com “blog articles” page),
April-November 2012.
●  a series of technical opinion pieces designed to combat standard

arguments against the development of high-level parallel languages

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Online Resources

Copyright 2015 Cray Inc.
42

Project page: http://chapel.cray.com
●  overview, papers, presentations, language spec, …

GitHub page: https://github.com/chapel-lang
●  download Chapel; browse source repository; contribute code

Facebook page: https://www.facebook.com/ChapelLanguage

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Community Resources

Copyright 2015 Cray Inc.
43

SourceForge page: https://sourceforge.net/projects/chapel/
●  hosts community mailing lists
 (also serves as an alternate release download site to GitHub)

Mailing Aliases:
●  chapel_info@cray.com: contact the team at Cray
●  chapel-announce@lists.sourceforge.net: read-only announcement list
●  chapel-users@lists.sourceforge.net: user-oriented discussion list
●  chapel-developers@lists.sourceforge.net: developer discussion
●  chapel-education@lists.sourceforge.net: educator discussion
●  chapel-bugs@lists.sourceforge.net: public bug forum

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Legal Disclaimer

Copyright 2015 Cray Inc.
44

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other
countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2015 Cray Inc.

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

