
C O M P U T E | S T O R E | A N A L Y Z E

Chapel Hierarchical Locales

Sung-Eun Choi, David Iten, Elliot Ronaghan, Greg Titus
Chapel Team

Cray Inc.

CHIUW @ PLDI

June 13, 2015

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2014 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

3

The problem: architecture and how to express it

● The solution: hierarchical locales

● Locality during compilation

● Status and plans

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s Architecture Model Was So Simple

Copyright 2014 Cray Inc.
4

● Traditionally, Chapel supported only a 1D array of locales
● Users could reshape/slice to suit their computation’s needs

● Apart from queries, no further visibility into locales

● Supports top level inter-node locality well
● Assumes target compiler, runtime, OS, HW can handle intra-locale

concerns

locale

m
e

m
o

ry

cpu

cpu

cpu

…

locale

m
e

m
o

ry

cpu

cpu

cpu

…

locale

m
e

m
o

ry

cpu

cpu

cpu

…

locale

m
e

m
o

ry

cpu

cpu

cpu

…

C O M P U T E | S T O R E | A N A L Y Z E

● (HPC) architectures are varied and evolving rapidly
● Intra-node architecture becoming

complex and important

● Hierarchy (example: NUMA)

● Heterogeneity (example: GPUs)

● Performance requires using

all architecture effectively
● But Chapel had no mechanism

to refer to intra-node details

● Need access to NUMA domains, CPUs, memories, etc.

Chapel’s Architecture Model Was Too Simple

Copyright 2014 Cray Inc.
5

locale

NUMA domain

mem
cpu cpu

cpu cpu

NUMA domain

mem

cpu cpu

cpu cpu

accelerator

m
e

m

cpu cpu

cpu cpu

cpu cpu

cpu cpu

…

C O M P U T E | S T O R E | A N A L Y Z E

What are the Requirements?

Copyright 2014 Cray Inc.
6

● Have just 3 architecture-dependent classes of operations:
 Memory management (allocate, free, etc.)

 Task support (initiate, move, etc.)

 Communication

● Helpful: do not need very many operations from each class

● Solution must be approachable, adaptable, flexible
● Knowing Chapel + architecture and being motivated should be enough

● Should not require “magic” and/or Chapel core team help

● Must support experimentation and prototyping

C O M P U T E | S T O R E | A N A L Y Z E

Outline

7

The problem: architecture and how to express it

The solution: hierarchical locales

● Locality during compilation

● Status and plans

C O M P U T E | S T O R E | A N A L Y Z E

Solution: Chapel Hierarchical Locales

Copyright 2014 Cray Inc.
8

● Standardized class describes CPU+mem architecture

 class LocaleModel { … }

● Composable, to reflect hierarchy

● Has required interface, referenced by generated code
● Memory management

● Task support

● Communication operations

● Hierarchical relatives (parents, siblings, children)

● May be implemented however desired
● Typically in terms of other LocaleModel instances or runtime calls

C O M P U T E | S T O R E | A N A L Y Z E

Example: The Predefined numa Locale Model

Copyright 2014 Cray Inc.
9

class NumaDomain : AbstractLocaleModel {

 const sid: chpl_sublocID_t;

}

// The node model

class LocaleModel : AbstractLocaleModel {

 const numSublocales: int;

 var childSpace: domain(1);

 var childLocales: [childSpace] NumaDomain;

}

// support for memory management

proc chpl_here_alloc(size:int, md:int(16)) { … }

// support for "on" statements

proc chpl_executeOn

 (loc: chpl_localeID_t, // target locale

 fn: int, // on-body func idx

 args: c_void_ptr, // func args

 args_size: int(32) // args size

) { … }

// support for tasking stmts: begin, cobegin, coforall

proc chpl_taskListAddCoStmt

 (subloc_id: int, // target subloc

 fn: int, // body func idx

 args: c_void_ptr, // func args

 ref tlist: _task_list, // task list

 tlist_node_id: int // task list owner

) { … }

$CHPL_HOME/modules/…/numa/LocaleModel.chpl

NUMA compute node

NUMA domain

mem
cpu cpu

cpu cpu

NUMA domain

mem
cpu cpu

cpu cpu

conceptual physical

h
ttp

://w
w

w
1
.p

c
m

a
g
.c

o
m

/m
e
d
ia

/im
a
g
e
s
/3

3
7
1
9
2

-in
te

l-x
e
o
n
-e

5
-c

h
ip

.jp
g
?
th

u
m

b
=

y

C O M P U T E | S T O R E | A N A L Y Z E

Where Predefined Locale Models Live

10

Generated

C Code

Chapel

Source

Code

Standard

C Compiler

& Linker

Chapel

Executable

Chapel

Compiler

Chapel-to-C

Compiler

Standard

Modules

(in Chapel)

Internal Modules

(in Chapel)

Runtime Support

Library (in C)
T
a
s
k
s
/T

h
re

a
d
s

C
o
m

m
u
n
ic

a
tio

n

M
e
m

o
ry

…

C O M P U T E | S T O R E | A N A L Y Z E

Where Predefined Locale Models Live

11

Generated

C Code

Chapel

Source

Code

Standard

C Compiler

& Linker

Chapel

Executable

Chapel

Compiler

Chapel-to-C

Compiler

Runtime Support

Library (in C)
T
a
s
k
s
/T

h
re

a
d
s

C
o
m

m
u
n
ic

a
tio

n

M
e
m

o
ry

…

Standard

Modules

(in Chapel)

Internal Modules

(in Chapel)

 Locale models provided by Chapel are

in internal modules

 User specifies locale model as part of

Chapel configuration when compiling

 application (via environment variable)

C O M P U T E | S T O R E | A N A L Y Z E

Hierarchical Locales Create a New Chapel Role

Copyright 2014 Cray Inc.
12

● Application programmer: work on applications
● Express solutions in a natural way

● Use forall statements to expose data parallelism

● Use domain maps to inform Chapel about locality and affinity

C O M P U T E | S T O R E | A N A L Y Z E

Hierarchical Locales Create a New Chapel Role

Copyright 2014 Cray Inc.
13

● Application programmer: work on applications
● Express solutions in a natural way

● Use forall statements to expose data parallelism

● Use domain maps to inform Chapel about locality and affinity

● Domain map specialist: work on locality
● In a general or conceptual way, not an architecture-specific one

C O M P U T E | S T O R E | A N A L Y Z E

Hierarchical Locales Create a New Chapel Role

Copyright 2014 Cray Inc.
14

● Application programmer: work on applications
● Express solutions in a natural way

● Use forall statements to expose data parallelism

● Use domain maps to inform Chapel about locality and affinity

● Domain map specialist: work on locality
● In a general or conceptual way, not an architecture-specific one

Architecture modeler: work on architectural mappings
● Describe architectural hierarchy

● Implement functional interfaces at various levels

C O M P U T E | S T O R E | A N A L Y Z E

Outline

15

The problem: architecture and how to express it

The solution: hierarchical locales

Locality during compilation

● Status and plans

C O M P U T E | S T O R E | A N A L Y Z E

Context: Using Predefined numa Locale Model

Copyright 2014 Cray Inc.
16

class NumaDomain : AbstractLocaleModel {

 const sid: chpl_sublocID_t;

}

// The node model

class LocaleModel : AbstractLocaleModel {

 const numSublocales: int;

 var childSpace: domain(1);

 var childLocales: [childSpace] NumaDomain;

}

// support for memory management

proc chpl_here_alloc(size:int, md:int(16)) { … }

// support for "on" statements

proc chpl_executeOn

 (loc: chpl_localeID_t, // target locale

 fn: int, // on-body func idx

 args: c_void_ptr, // func args

 args_size: int(32) // args size

) { … }

// support for tasking stmts: begin, cobegin, coforall

proc chpl_taskListAddCoStmt

 (subloc_id: int, // target subloc

 fn: int, // body func idx

 args: c_void_ptr, // func args

 ref tlist: _task_list, // task list

 tlist_node_id: int // task list owner

) { … }

$CHPL_HOME/modules/…/numa/LocaleModel.chpl

NUMA compute node

NUMA domain

mem
cpu cpu

cpu cpu

NUMA domain

mem
cpu cpu

cpu cpu

conceptual physical

h
ttp

://w
w

w
1
.p

c
m

a
g
.c

o
m

/m
e
d
ia

/im
a
g
e
s
/3

3
7
1
9
2

-in
te

l-x
e
o
n
-e

5
-c

h
ip

.jp
g
?
th

u
m

b
=

y

C O M P U T E | S T O R E | A N A L Y Z E

The Application, as Architecture-free Code

Copyright 2014 Cray Inc.
17

// Stream Triad

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped Block(…);

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

=

α·
+

C O M P U T E | S T O R E | A N A L Y Z E

The Application, as Architecture-free Code

Copyright 2014 Cray Inc.
18

// Stream Triad

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped Block(…);

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

=

α·
+

Express parallelism abstractly,

without referring to physical

architecture

C O M P U T E | S T O R E | A N A L Y Z E

The Application, as Architecture-free Code

Copyright 2014 Cray Inc.
19

// Stream Triad

config const m = 1000,

 alpha = 3.0;

const ProblemSpace = {1..m} dmapped Block(…);

var A, B, C: [ProblemSpace] real;

B = 2.0;

C = 3.0;

A = B + alpha * C;

=

α·
+

Specify domain map in

application code

Express parallelism abstractly,

without referring to physical

architecture

C O M P U T E | S T O R E | A N A L Y Z E

Locality & Affinity in the Domain Map

Copyright 2014 Cray Inc.
20

// Block domain map

class Block: BaseDist {

 var targetLocDom: domain(rank);

 var targetLocales: [targetLocDom] locale;

 var dataParTasksPerLocale: int;

 var dataParIgnoreRunningTasks: bool;

 var dataParMinGranularity: int;

}

…

iter these(param tag: iterKind,

 tasksPerLocale = dataParTasksPerLocale,

 ignoreRunning = dataParIgnoreRunningTasks,

 minIndicesPerTask = dataParMinGranularity)

{

 const numSublocs = here.getChildCount();

 if locModelHasSublocs && numSublocs != 0 {

 … _computeChunkStuff(min(numSublocs,

 here.maxTaskPar),

 ignoreRunning,

 minIndicesPerTask,

 ranges);

 …

 }

}

Domain map:

 Describes distribution of

indices (block, cyclic, etc.)

 Ties together locality, affinity,

parallelism via iterators for

forall-stmts

 Has a standardized interface,

referenced by compiler-

generated code

 Can interrogate locale model

to learn about resources

 Is typically coded by a

specialist

C O M P U T E | S T O R E | A N A L Y Z E

The Application, Translated by the Domain Map

Copyright 2014 Cray Inc.
21

coforall loc in targetLocales do on loc {

 coforall subloc in loc.getChildren() do on subloc {

 coforall tid in here.numCores {

 for (a,b,c) in zip(A,B,C) do a = b + alpha * c;

 }

 }

}

=

α·

+

const ProblemSpace = {1..m} dmapped Block(…);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

domain

map

iterator

C O M P U T E | S T O R E | A N A L Y Z E

… Translated Again, by the Chapel Compiler

Copyright 2014 Cray Inc.
22

coforall loc in targetLocales do on loc {

 coforall subloc in loc.getChildren() do on subloc {

 coforall tid in here.numCores {

 for (a,b,c) in zip(A,B,C) do a = b + alpha * c;

 }

 }

}

void main(…) {

 chpl_taskListAddCoStmt(fn_for_outer_coforall_stmt);

}

void fn_for_outer_coforall_stmt(…) {

 chpl_executeOn(loc, fn_for_on_stmt);

}

void fn_for_on_stmt(…) {

 chpl_taskListAddCoStmt(fn_for_middle_coforall_stmt);

}

void fn_for_middle_coforall_stmt(…) {

 chpl_taskListAddCoStmt(fn_for_inner_coforall_stmt);

}

void fn_for_inner_coforall_stmt(…) {

 for (…) { a[i] = b[i] + alpha * c[i]; }

}

Chapel

compiler

C code

Chapel code

C O M P U T E | S T O R E | A N A L Y Z E

Outline

23

The problem: architecture and how to express it

The solution: hierarchical locales

Locality during compilation

Status and plans

C O M P U T E | S T O R E | A N A L Y Z E

flat

m
e

m
o

ry

cpu

cpu

cpu

…

Today’s Locale Models: flat

Copyright 2014 Cray Inc.
24

● Direct replacement for the old

compiler-implemented model

● Same performance as old

compiler-based architecture

support

● Default in all cases

C O M P U T E | S T O R E | A N A L Y Z E

numa

NUMA domain

mem
cpu cpu

cpu cpu

NUMA domain

mem
cpu cpu

cpu cpu

Today’s Locale Models: numa

Copyright 2014 Cray Inc.
25

● Functional
● Tasks follow memory affinity properly

● Performance needs improvement
● Auto-init puts all mem on numa node 0

● Working on memory locality
● Auto-init improvements

● Low-level memory management

● Working on execution locality
● Improving numa handling in Qthreads

● Aiming at fall 2015 release

C O M P U T E | S T O R E | A N A L Y Z E

Tomorrow’s Locale Models: “real” knc

Copyright 2014 Cray Inc.
26

● Current Chapel Intel Xeon

Phi KNC support uses “flat”

● Duplicate and tune for KNC-

specific properties (breadth,

e.g.)
knc

m
e

m
o

ry

cpu

cpu

cpu

…

C O M P U T E | S T O R E | A N A L Y Z E

Tomorrow’s Locale Models: knl

Copyright 2014 Cray Inc.
27

● Intel Xeon Phi KNL would be an

elaboration of numa
● Similar to flat knc

● Working on:
● Access to high bandwidth memory

● Additional sub-locale?

● Specialized memory management

● KNL-specific Qthreads improvements

● Aiming at spring 2016 release

knl

NUMA domain-ish

mem
cpu cpu

cpu cpu

NUMA domain-ish

mem
cpu cpu

cpu cpu

C O M P U T E | S T O R E | A N A L Y Z E

Tomorrow’s Locale Models: accelerator

Copyright 2014 Cray Inc.
28

● Challenge: processor

heterogeneity

flat+accelerator

accelerator

s
h

a
re

d
 m

e
m

o
ry

cpu cpu

cpu cpu

cpu cpu

cpu cpu

…

m
e

m
o

ry

cpu

cpu

cpu
…

C O M P U T E | S T O R E | A N A L Y Z E

numa+accelerator

NUMA domain

mem
cpu cpu

cpu cpu

NUMA domain

mem
cpu cpu

cpu cpu

accelerator

s
h

a
re

d
 m

e
m

o
ry

cpu cpu

cpu cpu

cpu cpu

cpu cpu

…

Tomorrow’s Locale Models: numa+accelerator

Copyright 2014 Cray Inc.
29

● Challenge: hierarchy and

heterogeneity

● Good composability test

C O M P U T E | S T O R E | A N A L Y Z E

Summary

Copyright 2014 Cray Inc.
30

● Hierarchical Locales feature helps “future proof” Chapel

● Enables separation of concerns
 Application programmers are freed from architecture concerns

 Domain map programmers are freed from architecture concerns

 Compiler is freed from architecture concerns

 Even the Chapel language is freed from architectural concerns

● Puts Chapel architectural policy in the hands of those

most qualified to deal with it: architecture experts

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2014 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

31

