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This presentation may contain forward-looking statements that are 
based on our current expectations. Forward looking statements 
may include statements about our financial guidance and expected 
operating results, our opportunities and future potential, our product 
development and new product introduction plans, our ability to 
expand and penetrate our addressable markets and other 
statements that are not historical facts.  These statements are only 
predictions and actual results may materially vary from those 
projected. Please refer to Cray's documents filed with the SEC from 
time to time concerning factors that could affect the Company and 
these forward-looking statements.  
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● Vectorization is crucial for achieving peak performance 
●  true for commodity and HPC systems 
●  becoming increasingly important, particularly in HPC 

●  AVX-512 (Xeon and Xeon Phi) 
●  NEON (ARM) 

● Chapel relies on back-end compiler to auto-vectorize 
●  Chapel’s primary back-end generates C code 
●  C compilers are frequently thwarted by memory aliasing 

●  must make conservative assumptions that inhibit auto-vectorization 
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● Chapel is well-suited for vectorization 
●  limited aliasing 
●  support for array programing 

A = B + C; 

●  parallelism is a first class citizen 
forall i in 1..10 do … 

● Need to convey Chapel semantics to back-end 
●  do not want to generate explicit vectorization 

●  rather, convey when vectorization is legal 
●  leverage back-end compilers’ sophisticated and refined cost models 
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● Several recent efforts to help the back-end vectorize: 
●  Generate Chapel for-loops as C for-loops 
●  Optimize anonymous range iteration 
●  Annotate data parallel loops with vectorization pragmas  
●  Currently exploring manual marking of vectorizable loops 
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● Chapel for-loops and C for-loops are different 
●  Chapel for-loops invoke iterators or iterate over data structures: 

for i in 1..10 do … 
 

●  C for-loops are a specialized while-loop with init and incr clauses: 
for (i=1; i<=10; i+=1) … 
 

●  Chapel for-loops are more powerful: 
for a in myArray do … 
for (a, j) in zip(myArray, 1..10) do … 
 

● Want Chapel for-loops to be generated as C for-loops 
●  this is the form back-end compilers are designed to optimize 
●  required for attaching vectorization annotations 
●  will result in clean and readable generated code 
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● Most for-loops are driven by ranges 
●  they either directly iterate over range 
●  or a structure whose iterator forwards to a range iterator 

●  e.g. arrays, distributions 
for a in myArray do …       // iterate over an array  
 

…is implemeted in terms of… 
array.these() { 
  for i in myDomain do      // array iterates over its domain 
    yield dsiAccess(i); 
} 
 

…which is implemented in terms of… 
domain.these() { 
  for i in myRange do       // domain iterates over its range(s) 
    yield i; 
} 
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● Range iterators traditionally generated C while-loops 
 
for i in 1..10 do …         // range iteration 
 

generated: 
 

i = first;                      
end = last + 1; 
cont = (i != end); 
while(cont) {               // generated while loop 
  tmp = (i+1); 
  i = tmp; 
  cont = (tmp != end);      // != relational operator 
} 

 

●  not a loop that back-end compilers are designed to optimize 
●  not amenable to auto-vectorization or vectorization pragmas 
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●  To generate most Chapel for-loops as C for-loops we now: 
●  generate range iterators using C for-loops 

●  results in iterators that forward to ranges being generated as C for-loops 
●  generate zippered iterators as C for-loops 

●  because iterator inlining/lowering process is different for zippered iterators 
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● Generated code improvements 
●  Decreased generated code size: ~22,000 => ~20,500 for Jacobi 

 
 
●  Improved readability of generated code 

for i in 1..10 do … 
 

generates: 
 

for (i = start; (i <= end); i += INT64(1)) 
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● Generated code for range iteration 
for i in 1..10 do … 

 
previously: 

i = start; 
end = last + 1;   
cont = (i != end); 
while (cont) { 
  tmp = (i+1); 
  i = tmp; 

  conttmp = (tmp != end); 
  cont = conttmp; 
} 

 
now: 

for (i = start; (i <= end); i += INT64(1)) 
 



C O M P U T E 	   	   	   	   	   |	   	   	   	   	   S T O R E 	   	   	   	   	   |	   	   	   	   	   A N A L Y Z E

C for-loops: Impact (continued) 

Copyright 2014 Cray Inc. 
12 

● Generated code for zippered array iteration 
for (a, b) in zip(A, B) 

previously: 
 for (;_cond;) { 
    _ref_tmp_5 = &_ic__F6_i; 

    *(_ref_tmp_5) += _ic__F4_step; 
    tmp31 = (_ic__F6_i != _ic__F5_last); 

    if (tmp31) 
      _ic__more = INT64(1); 
     else  
      _ic__more = INT64(0); 
    _cond = (_ic__more != INT64(0)); 

    _ref_tmp_6 = &_ic__F6_i2; 

    *(_ref_tmp_6) += _ic__F4_step2; 
} 

now: 
for (_ic_i = start1, _ic_i2 = start2; 
(_ic_i <= _ic_last); ic_i += _ic_step, _ic_i2 += _ic_step2)  
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● Performance Improvements 
●  not many changes in our nightly performance testing 

●  couple cases like serial tuple accesses  
 
 
 

●  however, we believe there are real world performance improvements 
●  our nightly testing uses gcc 4.7 
●  it seems to lack some optimizations that benefit from C for-loops 

●  performed manual testing using gcc 4.9, intel, and cray compilers 
●  used stream and simple vector addition 
●  showed > 25% performance improvement in some cases 
●  back-end compiler tools indicate more auto-vectorization occurring 
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● Most Chapel for-loops now generate clean C for-loops 
●  However, previous generated code excluded range construction 
 

for i in 1..10 do … 
 

actually generates: 
 

build_range(INT64(1), INT64(10), range); 
start = range->low; 
end = range->high;  
for (i = start; i <= end; i += INT64(1)) 
 

●  Want to eliminate construction when possible 
●  such as when iterating over anonymous ranges 
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● Anonymous ranges: those not stored in a named variable 
●  cannot be referenced elsewhere 
●  commonly used directly in a loop 

for i in 1..10 do 
for i in lo..hi do 

 

● Ranges are implemented as records 
●  as a result, each range literal constructs a record 
●  anonymous ranges are not captured and cannot be used again 

●  so why waste time constructing them? 
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● Eliminate construction for common anonymous ranges 
●  provide an optimized iterator when stride is known at compile time 
●  eliminate cost of construction 
●  allow back-end compiler to better optimize and auto-vectorize 

●  This optimization occurs at parse time 
●  for-loop builder recognizes certain range patterns 
●  replaces those with a direct range iterator 

●  iterator takes low, high, stride as arguments 
●  e.g., compiler replaces:  
for i in 1..10 do 

with: 
for i in chpl_direct_range_iter(1, 10, 1) do 
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● Eliminates range construction for many common cases 
  

for i in 1..10 do writeln(i); 
 

previously: 
build_range(INT64(1), INT64(10), range); 
start = range->low; 
end = range->high;  
for (i = start; i <= end; i += INT64(1)) 
  writeln(i); 
 

now: 
for (i = INT64(1); i <= INT64(10); i += INT64(1)) 
  writeln(i); 
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● Optimized iteration for strides known at compile time 
  

for i in 1..10 by 2 do writeln(i); 
 

previously: 
// function call to build range 
// function call to apply ‘by’ operator to range 
// function call and conditional check to see if range is ambiguous 
// function call to compute the starting value 
// conditional check to see if range is empty (e.g. 2..1) 
// function call to compute the ending value 
for (i = start; i != end; i += str) // finally iterate, but using != 
  writeln(i); 
 

now: 
for (i = INT64(1); i <= INT64(10); i += INT64(2)) 
  writeln(i); 

71 SLOC 
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● Better back-end optimization and auto-vectorization 
●  range construction and other checks obfuscate iteration pattern 
●  we now propagate range literals directly to the C for loop  

●  helps create cleaner vectorized code (eliminates some loop peeling) 
●  allows compiler to better select unrolling factor and trip count 

● No major changes seen in nightly performance graphs 
●  not terribly surprising 

●  most time spent in loop body, not prelude 
●  not many benchmarks iterate over nested anonymous ranges 
●  still lacked performance testing with modern vectorizing back-end compilers 

●  have since started testing with the newest versions of Cray, GNU, Intel, and PGI 
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● Cases that are currently handled  
for i in 1..10 do                   // works for simple ranges 
for i in 1..10+1 do                 // works with expressions in ranges 
var lo=1, hi=10; for i in lo..hi do // works for variables  
for i in 1..10 by 2 do              // works for strided ranges 
for (i, j) in zip(1..10, 1..10) do  // works for zippered iters 
for (i, j) in zip(A, 1..10) do      // following non-ranges also works 
coforall i in 1..10 by 2 do         // works for coforalls as well 

● Cases that are not handled 
for i in (1..) do              // doesn't handle unbounded ranges 
for i in 1..10 by 2 by 2 do    // doesn't handle more than 1 ‘by’ operator 
for i in 1..10 align 2 do      // doesn't handle ‘align’ operator 
for i in 1..#10 do             // doesn't handle ‘count’ operator 
var r = 1..10; for i in r do   // not an anonymous range 
forall i in 1..10 do           // does not get applied to foralls 
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Anonymous Range Opt: Next Steps 
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● Handle additional cases 
for i in 1..#10 // used frequently in leader and standalone iterators  
 

● Move optimization from parse-time to after resolution 
●  requires that resolution is moved before normalization 
●  would allow us to handle more cases  

●  …and not be so careful about preserving user errors 
●  would allow us to anonymize named ranges used only for iteration 

var r = 1..10; 
if debugParam then writeln(r);  // common in our iterators  
for i in r do yield i; 
 
var r = 1..10; 
for i in r do A[i] = i; 
for i in r do A[i] = A[i%10+1]; // common in benchmarks & user code 
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● Most Chapel for-loops generate “ideal” C for-loop equivalent 

●  Can now focus on conveying Chapel semantics to back-end 
●  Remember that Chapel is well-suited for vectorization because 

●  limited aliasing 
●  support for array programing 
  A = B + C; 

●  parallelism, and especially data parallelism is a first class concept 
  forall i in 1..10 do … 
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● Data-parallel operations are vectorizable 
●  user asserts there are no data dependencies or ordering constraints 

A = B + C; 
forall i in 1..n do A[i] = B[i] + C[i]; 
forall (a, b, c) in zip(A, B, C) do a = b + c; 

 

● Data-parallelism implemented in terms of task-parallelism 
●  leader iterators create parallelism and assign work to followers 
●  follower iterators serially do the chunk of work assigned by the leader 

●  work assigned to followers should have no vector dependencies 
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● Mark follower loops with ‘#pragma ivdep’ in C code 
●  ‘ivdep’ tells the back-end compiler to ignore vector dependencies 

●  each compiler has slightly different semantics for the pragma 
  

●  ‘ivdep’ permits back-end to ignore assumed dependencies  
●  iteration dependence, memory aliasing, etc. 
●  back-end may unconditionally vectorize loops with potential aliases 

●  instead of two loops with a runtime check to see if the vector version is safe 
●  back-end can vectorize loops that it assumed were illegal before 
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● Compiler approach for marking follower loops with ivdep 
●  mark yielding follower loops as order-independent during resolution 

●  these are the loops that will execute the body of a forall loop 
●  (others may do bookkeeping unrelated to the loop’s forall semantics) 

●  propagate order-independence during iterator lowering/inlining  
●  loops that cannot be inlined are not order-independent 

●  advance() function cannot be vectorized 
●  a zippered iterator is order-independent iff all iterands are & they are inlined 

●  if vectorization is enabled, annotate these order-independent loops 
●  generate CHPL_PRAGMA_IVDEP, defined in the runtime for each compiler 

● Added extensive test suite 
●  uses a reporting mechanism to ensure correct loops are annotated 

●  and other loops are not mistakenly annotated 
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● Many serial follower loops are annotated 
 

forall i in 1..10 do A[i] = i; 
 

generates: 
 

//~15 lines of follower setup 
CHPL_PRAGMA_IVDEP 
for (i = low; i <= high; i += INT64(1)) { 
  call_tmp = (shiftedData + i); 
  *(call_tmp) = i; 
} 
 

●  Improves vectorization of loops 
●  determined via back-end vectorization reporting output 

●  fewer conditional checks at runtime 
●  some previously non-vectorizable loops are now being vectorized  
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● Performance improvements  
●  20% performance improvement of stream-ep on Intel KNC 

●  runtime checks were more expensive on KNC vs. Xeon 
●  improvements for benchmarks with complex array access patterns 
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● Vectorization is enabled with the --vectorize flag 
●  automatically enabled with --fast 
●  controls whether order-independent loops are marked with ivdep 

●  will control more settings in the future (hence generic name) 

● Ran into issues with Cray as the back-end compiler 
●  ‘ivdep’ has slightly different semantics compared to other compilers 

●  discovered late in release cycle 
●  conservatively stopped annotating with ‘ivdep’ for Cray 
●  additional work required to re-enable in appropriate cases 
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● Add more loop and vectorization benchmarks 
●  Livermore Compiler Analysis Loop Suite (LCALS) 

●  (formerly Livermore Loops) 

● Add tests to inspect back-end vectorization reports 
●  to detect which loops are actually being vectorized 

● Start nightly performance testing on Xeon Phi 
● Explore options with Cray compiler 

●  see what additional analysis we need to attach ‘ivdep’ 
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● Many serial follower loops are annotated 
 

●  Improved vectorization of loops 
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●  Combined, these efforts greatly improve vectorization of Chapel code 
  

forall i in 1..10 do … 
 

1.9: 
// ~75 lines of follower setup … 
_build_range(fol.low, fol.high, &folRange); 
// 4 fn calls to un-densify follower 
_build_range(undenLow, undenHigh, &undenRange); 
// 2 fn calls and conditional to compute start/end 
while (test) {…} 
 

now: 
// ~15 lines of follower setup … 
low = fol.low, high = fol.high; 
CHPL_PRAGMA_IVDEP 
for (i = low; i <= high; i += INT64(1)) {…} 

102 SLOC 
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●  Let users provide vectorization hints on serial loops 
●  currently being worked on 

for i in vectorizedIter(1..10) do … 

● Align memory allocations and generate alignment hints 
●  eliminate loop peeling, cleaner vectorization 

● Mark non-aliasing pointers with ‘restrict’ keyword 
●  perform alias analysis at Chapel level and annotate restricted pointers 

●  Chapel has limited aliasing, this helps convey that to the back-end 
●  should help with vectorization and other performance optimizations 

● Continue exploring other languages vectorization stories 
●  Does anyone have a good story?  

●  Fortran? Julia? Intel’s ISPC? 
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●  Investigate potential generated code improvements 
●  engage back-end compiler developers for recommendations 

● Explore what we can do with LLVM 
●  we may become constrained by what we can express in C 
●  might be able to convey more Chapel semantics to LLVM back-end 

● Explore users need for more explicit vectorization support 
●  do we need to provide explicitly vectorized data structures & libraries? 
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● Vectorization has greatly improved with recent releases 
●  with no user code changes required 
 

●  That said, we still plenty of work to do 
●  with several improvements already in the pipeline 
 

● We are extremely interested in any user feedback 
●  about our current and future vectorization roadmap 
●  and about other programming models with good vectorization stories 
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