
Shared Memory HPC Programming:
Past, Present, and Future

Bill Carlson
IDA Center for Computing Sciences

June 13, 2015

Disclaimer

This presentation reflects the personal views of the author.

These views may or may not be held the author’s employer
or its sponsors.

Our Problem in 1993
How do we program this? And get good performance?

AC for the Cray T3D

An outgrowth of our work on CM5

Shared memory on a distributed memory machine

“dist” keyword is the only syntax change

Performance high from special hardware on T3D

Much faster than “shmem” library, due to low
overhead

UPC = AC + Split-C + PCP

Collaboration with UC Berkeley and LLNL

Takes “shared” from AC’s “dist”

“strict” and “relaxed” shared memory semantics

Split barriers: “notify/wait”

Locks

Adds several data distributions

PGAS:
Expanding the
collaboration

SHMEM Library
CoArray Fortran
Global Arrays
Titanium

DARPA’s HPCS Program

High Productivity Computing Systems

Productivity: Output per unit of Input

Output is problems solved

Input is money, energy, people time

Goal: Increase productivity of HPC by 10x:

Systems performance 10x for many metrics

Algorithm and Software developers 10x effective in making good code

System operators spend 1/10 effort to manage system

HPCS added “modern” concepts

Fortress: Implicit Parallelism, Strong Types

Cool look: like math in both ASCII and Unicode

Effort ended in 2012

X10: Java-like syntax, asynchrony, locales

Going strong, a workshop at this conference

Chapel: You all know this!

Post-HPCS PGAS efforts

Habenaro C and UPC++ (Rice)

UPC++ (Berkeley)

CoArray C++ (Cray, EPCC)

HPX (C++/11,14, LSU, FAU)

XcalableMP (Tskuba)

GASPI (Fraunhofer)

HPC at a Crossroads

Path to ExaScale is underway

Market is experiencing growth

Systems increasingly specialized

Driven by ExaScale goals

Application development is
getting harder, not easier

PGAS at a Crossroads

Many implementations exist of PGAS techniques

Provide a wealth of programming metaphors

Performance has been shown to be very good

A number of cases which exceed best message passing code

Because you have a wider choice of algorithms!

Programmer “base” is

(somewhat) small, and

(somewhat) static

Our Problem in 2015
How do we program this? And get good performance? And expand use?

Thought Questions for Today

Should the programming model be multi-level?

Will future HPC systems be more complex?

Can PGAS bring entire new use cases to HPC?

Should PGAS care about HPC?

Multi-Level Parallelism?

Hardware is becoming increasingly hierarchical

Start with SMP “nodes” in distributed machines

Add threads within cores within processors

GPUs and other accelerators only add to the mess

Two distinct issues:

What is shared among threads on a “node”? But not globally?

What controls the parallel activity on a node?

Multi-Level Parallelism?

Some programming models urge multi-level

SHMEM + pthreads or OpenMP

Programmers then write two levels of control flow, one for
across nodes, one for on nodes

UPC supports only local and shared

What is the problem with a PGAS thread per thread?

An extension was made to allow shared allocation on node

Complexity of Next Gen HPC?

Strong forces for higher complexity

Need to control energy leads to specialization

Accelerators like GPUs

Small, specialized memories

Communication at a distance is always limited by cost

ExaScale goals are pushing for large performance gains

Some trends to lower complexity

Many applications can fit “on a node” or small segment of system

Communication bound algorithms might ignore complex parts of system

New Uses for HPC/PGAS

A lot of emphasis on “Big Data”

How about an awesomely fast PGAS key-value store

Machine “Deep” “learning”

Can PGAS allow real advances in this field

Previously “Abandoned” HPC applications

Industrial uses in manufacturing

My assertions:

PGAS languages could help add new application areas

All of these areas are not using HPC (much) because it is too hard to get apps on systems

Is “HPC” the only PGAS “market”?

Mostly yes

Pointless to “partition” a tiny system

But maybe not!

No widely-useful model for programing SMP processors

Most restricted to concurrency (e.g., go)

PGAS could provide a path to scalable apps

PGAS can be powerful metaphor in progammer education

PGAS Future?

Stay the Course?

Another Unification?

Another Adaptation?

Path Forward One: Keep Pressing

Our current languages are good!

Our current programmers are good!

We are growing friends all the time

To Do List:

Implement github-scale sharing of PGAS utilities

Start work on new application areas

Develop curriculum

Path Forward Two: New Unification

UPC took three smaller, locally used languages

And made something better than sum of parts

Many C++ based PGAS efforts are underway

And others have been considered as well

C++ recently gaining “popularity”

Recent changes in C++ standard help

Maybe admits a “PGAS class” without language change

But gaining branding and adoption is always hard

Path Forward Three: New Adaptation

Python

Very popular, including at many HPC centers

My view: current parallel classes poor fit for Python

Opportunity!

Go (Google)

Already has a concurrency model, can parallel be added?

Swift (Apple)

Will be a huge programmer base due to iPhone

Any of these (and probably many others) could admit PGAS as a “class”

Future Vistas for PGAS
The fun has only begun

Image Credits

T3D Image: CC-BY-SA-2.0-fr Rama, Wikimedia: CRAY-T3D IMG
8981-82-87-89.CR2.jpg

Expanding Image: Public Domain, "CMB Timeline300 no WMAP" by
NASA Wikimedia:CMB_Timeline300_no_WMAP.jpg

Crossroads Image: CC-BY-SA Umberto Nicoletti, flickr.com/photos/
unicoletti/2851575552

Titan Image: Public Domain, James086, Wikimedia: Titan render.png

Final Image: CC-BY-2.0 Nicholas A. Tonelli, flickr.com/photos/
nicholas_t/6697202819

