Shared Memory HPC Programming: |
* Past, Present, and Future

Bull Carlson
LDA Center for Computing Sciences
Sune 13, 2015




Dusclarmer
1 hus presentation reflects the personal views of the author:

1 hese views may or may not be held the author’s employer
or s SPonsors.




Our Problem in 1993

How do we program this? And get good performance?




AC for the Cray 13D

<= An outgrowth of our work on GMb)
<= Shared memory on a distributed memory machine
<= “dist” keyword 1s the only syntax change
rformance high from special hardware on 13D

<+ Pe
<= Much faster than “shmem” library, due to low
overhead




UPC = AC + Split-C + PCP

<= (ollaboration with UG Berkeley and LILNIL.
<+ Takes “shared” tfrom AC’s “dist”
= “strict” and “relaxed” shared memory semantics
<= Split barriers: “notity/wait”
ocks

<= L
<+ Adds several data distributions




PGAS:

Expanding the

collaboration

SHMEM Library
CoArray Fortran
Global Arrays

T1tanium

Development of
Galaxies, Planets, etc.

Dark Ages

T,

T Sl IR
WA 'R
S

i ﬁgm

W
I

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years




DARPA's HPCS Program

= High Productivity Computing Systems
<= Productivity: Output per unit of Input
<= Qutput is problems solved
<= Input 1s money, energy, people time
<= Goal: Increase productivity of HPGC by 10x:
<= Systems performance 10x for many metrics
<= Algorithm and Software developers 10x effective in making good code

<= System operators spend 1/10 effort to manage system




HPCS added “modern” concepts

<= Fortress: Implicit Parallelism, Strong Types
<+ (ool look: like math in both ASCII and Unicode
<+ Effort ended in 2012

<= X10: Java-like syntax, asynchrony, locales
= (Going strong, a workshop at this conference

<= Chapel: You all know this!




Post-HPCS PGAS eflforts

<= Habenaro G and UPC++ (Rice)
= UPC++ (Berkeley)

<= CoArray C++ (Cray, EPCC)
Gt/ 1] 14 LSU, FAU)
<= XcalableMP (Tskuba)

<= GASPI (Fraunhofer)




HPC at a Crossroads

<= Path to ExaScale 1s underway

<= Market 1s experiencing growth

= Systems increasingly specialized
<= Driven by ExaScale goals

<= Application development 1s
getting harder, not easier




PGAS at a Crossroads

<= Many implementations exist of PGAS techniques
= Provide a wealth of programming metaphors
<= Performance has been shown to be very good
<= A number of cases which exceed best message passing code
= Because you have a wider choice of algorithms!
<+ Programmer “base” 1s
<+ (somewhat) small, and

< (somewhat) static




Our Problem 1n 2015

How do we program this? And get good performance?” And expand use’?




Thought Questions for 'Today

<= Should the programming model be multi-level?

o

= Will tuture HPC systems be more complex?

<= (an PGAS bring entire new use cases to HPCG?

o

= Should PGAS care about HPC?




Multi-Level Parallelism?

<= Hardware is becoming increasingly hierarchical
< Start with SMP “nodes” in distributed machines
<+ Add threads within cores within processors
<+ GPUs and other accelerators only add to the mess
<+ Two distinct 1ssues:
<= What 1s shared among threads on a “node”? But not globally?

<= What controls the parallel activity on a node?




Multi-Level Parallelism?

<= Some programming models urge multi-level
= SHMEM + pthreads or OpenMP

= Programmers then write two levels of control flow, one for
across nodes, one for on nodes

<= UPC supports only local and shared

<= What is the problem with a PGAS thread per thread?

< An extension was made to allow shared allocation on node




Complexity of Next Gen HPC?

<= Strong forces for higher complexity
<+ Need to control energy leads to specialization
<= Accelerators like GPUs
<= Small, specialized memories
<+ Communication at a distance 1s always limited by cost
<= ExaScale goals are pushing for large performance gains
<= Some trends to lower complexity
<= Many applications can fit “on a node” or small segment of system

<+ Communication bound algorithms might ignore complex parts of system




New Uses for HPC/PGAS

<= A lot of emphasis on “Big Data”
<= How about an awesomely fast PGAS key-value store
<= Machine “Deep” “learning”
<= (Can PGAS allow real advances 1n this field
<= Previously “Abandoned” HPC applications
<= Industrial uses in manufacturing
<= My assertions:
<= PGAS languages could help add new application areas

<= All of these areas are not using HPC (much) because it is too hard to get apps on systems




Is “HPC” the only PGAS “market”?

= Mostly yes
<= Pointless to “partition” a tiny system
= But maybe not!
<= No widely-useful model for programing SMP processors
<= Most restricted to concurrency (e.g., go)
<= PGAS could provide a path to scalable apps

<= PGAS can be powerful metaphor in progammer education




PGAS Future?

<= Stay the Course?
< Another Unification?

<= Another Adaptation?




Path Forward One: Keep Pressing

<= Our current languages are good!

<= Our current programmers are good!

<= We are growing friends all the time

<+ "To Do List:
<= Implement github-scale sharing of PGAS utilities
= Start work on new application areas

<= Develop curriculum




Path Forward 1wo: New Unification

<= UPGC took three smaller, locally used languages
<+ And made something better than sum of parts
<= Many C++ based PGAS efforts are underway
<+ And others have been considered as well
<= (C++ recently gaining “popularity”
<= Recent changes in C++ standard help
= Maybe admits a “PGAS class” without language change

<+ But gaining branding and adoption 1s always hard




Path Forward T'hree: New Adaptation

<= Python

<= Very popular, including at many HPC centers

<= My view: current parallel classes poor fit for Python

= Opportunity!

= Go (Google)

<+ Already has a concurrency model, can parallel be added?
= Swift (Apple)

<= WIill be a huge programmer base due to iPhone

<= Any of these (and probably many others) could admit PGAS as a “class”




Future Vistas for PGAS

1 he fun has only begun




Image Credits

<= T3D Image: CC-BY-SA-2.0-fr Rama, Wikimedia: CRAY-T3D IMG
8981-82-87-89.CR2.jpg

<= Expanding Image: Public Domain, "CMB Timeline300 no WMAP" by
NASA Wikimedia:CMB_Timeline300_no_WMAPjpg

<= (rossroads Image: CC-BY-SA Umberto Nicoletti, flickr.com/photos/
unicolett1/2851575552

= Titan Image: Public Domain, James086, Wikimedia: Titan render.png

= Final Image: GC-BY-2.0 Nicholas A. Tonelli, flickr.com/photos/
nicholas t/6697202819




