Shared Memory HPC Programming: Past, Present, and Future Bill Carlson IDA Center for Computing Sciences June 13, 2015 #### Disclaimer This presentation reflects the personal views of the author. These views may or may not be held the author's employer or its sponsors. #### Our Problem in 1993 How do we program this? And get good performance? # AC for the Cray T3D - * An outgrowth of our work on CM5 - * Shared memory on a distributed memory machine - * "dist" keyword is the only syntax change - * Performance high from special hardware on T3D - * Much faster than "shmem" library, due to low overhead # UPC = AC + Split-C + PCP - Collaboration with UC Berkeley and LLNL - * Takes "shared" from AC's "dist" - * "strict" and "relaxed" shared memory semantics - Split barriers: "notify/wait" - * Locks - * Adds several data distributions # PGAS: Expanding the collaboration - * SHMEM Library - CoArray Fortran - Global Arrays - * Titanium # DARPA's HPCS Program - * High *Productivity* Computing Systems - * Productivity: Output per unit of Input - Output is problems solved - Input is money, energy, people time - * Goal: Increase productivity of HPC by 10x: - Systems performance 10x for many metrics - * Algorithm and Software developers 10x effective in making good code - * System operators spend 1/10 effort to manage system #### HPCS added "modern" concepts - * Fortress: Implicit Parallelism, Strong Types - * Cool look: like math in both ASCII and Unicode - * Effort ended in 2012 - * X10: Java-like syntax, asynchrony, locales - * Going strong, a workshop at this conference - Chapel: You all know this! #### Post-HPCS PGAS efforts - * Habenaro C and UPC++ (Rice) - UPC++ (Berkeley) - CoArray C++ (Cray, EPCC) - ♣ HPX (C++/11,14, LSU, FAU) - * XcalableMP (Tskuba) - GASPI (Fraunhofer) #### HPC at a Crossroads - * Path to ExaScale is underway - Market is experiencing growth - * Systems increasingly specialized - Driven by ExaScale goals - Application development is getting harder, not easier #### PGAS at a Crossroads - * Many implementations exist of PGAS techniques - * Provide a wealth of programming metaphors - * Performance has been shown to be very good - * A number of cases which exceed best message passing code - * Because you have a wider choice of algorithms! - * Programmer "base" is - * (somewhat) small, and - (somewhat) static #### Our Problem in 2015 How do we program this? And get good performance? And expand use? # Thought Questions for Today - * Should the programming model be multi-level? - * Will future HPC systems be more complex? - * Can PGAS bring entire new use cases to HPC? - * Should PGAS care about HPC? #### Multi-Level Parallelism? - * Hardware is becoming increasingly hierarchical - * Start with SMP "nodes" in distributed machines - * Add threads within cores within processors - * GPUs and other accelerators only add to the mess - * Two distinct issues: - * What is shared among threads on a "node"? But not globally? - * What controls the parallel activity on a node? #### Multi-Level Parallelism? - * Some programming models urge multi-level - SHMEM + pthreads or OpenMP - Programmers then write two levels of control flow, one for across nodes, one for on nodes - * UPC supports only local and shared - What is the problem with a PGAS thread per thread? - * An extension was made to allow shared allocation on node ### Complexity of Next Gen HPC? - Strong forces for higher complexity - * Need to control energy leads to specialization - * Accelerators like GPUs - * Small, specialized memories - Communication at a distance is always limited by cost - * ExaScale goals are pushing for large performance gains - Some trends to lower complexity - * Many applications can fit "on a node" or small segment of system - * Communication bound algorithms might ignore complex parts of system #### New Uses for HPC/PGAS - * A lot of emphasis on "Big Data" - * How about an awesomely fast PGAS key-value store - * Machine "Deep" "learning" - Can PGAS allow real advances in this field - Previously "Abandoned" HPC applications - Industrial uses in manufacturing - * My assertions: - PGAS languages could help add new application areas - * All of these areas are not using HPC (much) because it is too hard to get apps on systems #### Is "HPC" the only PGAS "market"? - Mostly yes - * Pointless to "partition" a tiny system - * But maybe not! - * No widely-useful model for programing SMP processors - Most restricted to concurrency (e.g., go) - * PGAS could provide a path to scalable apps - * PGAS can be powerful metaphor in progammer education #### PGAS Future? - * Stay the Course? - * Another Unification? - * Another Adaptation? ## Path Forward One: Keep Pressing - Our current languages are good! - * Our current programmers are good! - * We are growing friends all the time - * To Do List: - * Implement github-scale sharing of PGAS utilities - Start work on new application areas - * Develop curriculum #### Path Forward Two: New Unification - * UPC took three smaller, locally used languages - * And made something better than sum of parts - Many C++ based PGAS efforts are underway - * And others have been considered as well - * C++ recently gaining "popularity" - * Recent changes in C++ standard help - * Maybe admits a "PGAS class" without language change - * But gaining branding and adoption is always hard #### Path Forward Three: New Adaptation - * Python - * Very popular, including at many HPC centers - * My view: current parallel classes poor fit for Python - * Opportunity! - * Go (Google) - * Already has a concurrency model, can parallel be added? - Swift (Apple) - * Will be a huge programmer base due to iPhone - * Any of these (and probably many others) could admit PGAS as a "class" #### Future Vistas for PGAS The fun has only begun # Image Credits - * T3D Image: CC-BY-SA-2.0-fr Rama, Wikimedia: CRAY-T3D IMG 8981-82-87-89.CR2.jpg - * Expanding Image: Public Domain, "CMB Timeline300 no WMAP" by NASA Wikimedia:CMB_Timeline300_no_WMAP.jpg - Crossroads Image: CC-BY-SA Umberto Nicoletti, flickr.com/photos/ unicoletti/2851575552 - * Titan Image: Public Domain, James 086, Wikimedia: Titan render.png - Final Image: CC-BY-2.0 Nicholas A. Tonelli, <u>flickr.com/photos/nicholas_t/6697202819</u>