Data-Centric Locality in Chapel

Ben Harshbarger
Cray Inc.

CHIUW 2015

Safe Harbor Statement .

(?\.
(
\

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
. . Y,

Copyright 2014 Cray Inc.

Outline O\

e Background on multi-locale implementation)
e 1.10 multi-locale performance issues

e Data-centric approaches to improving performance

e Performance results

e Future work

(@ ®

Background on multi-locale implementation

e ‘Wide pointers’ represent potentially remote vars

typedef struct ({
int localelID: // where this object lives
myClass addr; // pointer to data

} wide myClass;

¢ Runtime GETs and PUTs used to read/write data

Compiler-generated C

void bar (wide myClass foo)
myClass local foo;
local foo = comm get (foo.locale, foo.addr);
// do things with ‘local _foo’

}

Background on multi-locale implementation

e Runtime will avoid unnecessary communication

void* comm get (int 1d, wvoid* addr) {
if (id == here.id) {
return addr;
} else {
// comm layer call
}

1.10 multi-locale performance issues . o

e Wide pointers are conservatively introduced \
e Simple implementation
e Easier to ensure program correctness

e Local data is often represented with wide pointers
e Unnecessary overhead

e This is particularly bad for arrays
e Wide pointer overhead for every array access
e May prevent back-end C compiler optimizations

/C‘\ COMPUTE | STORE | ANALYZE
=/ Copyright 2015 Cray Inc. @

1.10 multi-locale performance issues

e Functions have the most general declaration

e If an argument is wide, the function formal will be wide

e Insert a temporary if the actual is not wide
e Particularly bad for member functions

void myClass foo (wide myClass this) { .. }

wide myClass X;
myClass_foo(X); // ‘bar’now has to be wide

myClass Y;

wide myClass temp;
temp.locale = here.id;
temp.addr = Y;
myClass foo (temp) ;

1.10 multi-locale performance issues

e Before 1.11, all fields were conservatively widened \

e If that field was a class

e Again, especially bad for arrays

Chapel code

// Simplified internal array representation
class ArrayClass {
var dom : domain;

var data : cPtr(int); // wide pointer

COMPUTE | STORE

Copyright 2015 Cray Inc.

ANALYZE

1.10 multi-locale performance issues

e The ‘local’ block tends to save us in distributed code \

// Simplified implementation of distributed array access
proc DistArray.access(var 1dx : int) {
local {
if islocalldx(idx) then return locData[idx];

}
// remote code

}

e Assertion that no communication is required

e Pros: simple implementation, good performance

e Informs the compiler to not insert wide pointers

e Cons: Imprecise, scoping issues

Data-centric improvements .

e Problem: too many coarse-grained decisions \

e Compiler: “every field must be wide”

e Developer: “everything in this block is local”

e Better: reason about locality on a data-centric basis

e Goal: get rid of the local block

(@ ®

Data-centric improvements — local fields

e New in 1.11: the “local field” pragma

e Allows class designers to assert locality for each field

e Only works for class fields within an aggregate type
e Automatically applied to arrays in an aggregate type

// Simplified internal array representation
class ArrayClass {
var dom : domain;

pragma “local field”

}

proc ArrayClass.check () {
return this.locale.id == data.locale.id;

}

var data : cPtr(int); //compiler can reduce overhead

Data-centric improvements — local fields . o

e Applied this pragma to C pointers in DefaultRectangular \

e DefaultRectangularis...
...the domain map used to implement local arrays by default
...also used as the guts of virtually every other domain map (e.g., Block)

e Its pointers should never point to remote data
e Represents a significant source of overhead given its widespread use

e Runtime checks inserted to ensure correctness
e Invoked on reads or writes of such fields
e Generates runtime error if field is assigned remote data

e Can disable with “--no-local-checks”
e Or with --no-checks or --fast

/é\ COMPUTE | STORE | ANALYZE
=/ Copyright 2015 Cray Inc. @

Data-centric improvements — functions

e Arrays and domains are implemented as classes

e Compiler tends to widen the “this” argument

void myClass foo (wide myClass this, ..) { ..}

e Need to insert wide temps if actual isn’t wide

Data-centric improvements — functions

e Possible solution: duplicate member functions

void myClass foo (wide myClass this, ..) { ..}
void myClass foo (myClass this, ..) { ..}

e Currently implemented on a dev branch
e Complicates implementation
e Larger generated-C code size
e Positive performance improvements

Performance results .

e Collected on 64-bit Linux with 2 quad core (8 HT) Intel \

Xeon Processors
e 8 cores, 16 threads, 48GB ram

e Numbers gathered using 1.10 and 1.11 releases

(@ ®

Performance results

e No multi-locale numbers (yet)
e “local” block squashes most distributed overhead

e These numbers compare local vs no-local
e |ocal: compiling without a comm layer, zero wide pointers
e no-local: inserts wide pointers, even if no comm layer is selected

/C':R COMPUTE | STORE | ANALYZE
=

=~/ Copyright 2015 Cray Inc.

Performance results

e Serial array iteration
e Mostly improved due to local fields

2.5

¥ [ocal

Time

¥ 1.10-no-local

®1.11-no-local

Array ddata

/é\ COMPUTE | STORE | ANALYZE
=

J Copyright 2015 Cray Inc.

Performance results

e Computer Language Benchmarks Game
e Mostly improved due to local fields

80
70
60
50
40
30
20
10

0

Time

/ Over 200 seconds

¥ [ocal

¥ 1.10-no-local

®1.11-no-local

fannkuch n-body

COMPUTE | STORE | ANALYZE

Copyright 2015 Cray Inc.

Performance results

e HPCC STREAM-EP: Background

coforall loc in Locales do on loc {
local { // shouldn’t need this, clearly no communication
var A, B, C : [1l..n] real;
const alpha = 3.0;

initVectors (B, C);
for trial in 1..numTrials {

forall (a, b, ¢) in zip(A, B, C) do
a = b + alpha * c¢;

Performance results

e STREAM-EP (without local block)

e Bigger is better
e Mostly improved due to function duplication
e Gathered with clang 5.1

14
12
10

0 8 - ¥ |ocal

m

O 6 - % 1.10-no-local
4 - ® dev-no-local
2 _
O _

stream-ep
/C'i COMPUTE | STORE | ANALYZE

=~/ Copyright 2015 Cray Inc.

Future work

e Use “local field” pragma in more places

e Replace pragma with a robust language-level construct

e Not just fields
e Array elements

e Regularly-scoped variables

e Still in design phase
e But here’s an idea:

var data : [1..10]

// Instead of a pragma...
class Bar {

}

var baz : local Foo;

local Foo;

var f : local Foo;

COMPUTE

STORE

Copyright 2015 Cray Inc.

ANALYZE

Future work oo

e Deprecate the ‘local’ block \
e This statement is imprecise
e Scoping rules limit its applicability
e We would prefer finer-grained, data-centric locality assertions

e Support Local Array Views
e Often a program wants to only work with local array data
e typically results in similarly conservative “is this element remote?” checks
e Doing so today is possible, but a bit clunky

e Sketch of concept:
var myLocArrElts = Arr[local];
.myLocArrElts[i,J].. //fastlocal access to Alij]; OOB if (i,j) is remote

e Current array-view effort provides a framework for this feature

Ef COMPUTE | STORE | ANALYZE
=/ Copyright 2015 Cray Inc. @

Future work oo

e Given “on foo do ..”

e Avoid on-statement overhead
e If foo is local, we can avoid runtime overhead for on-statements

e Namely, avoid allocating bundled arguments
e This is important for atomic operations, which have on-statements

e Optimize £oo within the on-statement
e By definition, the on-statement will execute on foo’s locale
e Thus, we know references to foo are local within the on-statement

/C':R COMPUTE | STORE | ANALYZE
=

=/ Copyright 2015 Cray Inc. @

Summary .

e Allowing developers to assert locality is valuable \

e The compiler should (and can be) smarter about locality

e These two factors should result in improved performance

(@ @

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORIT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

(@ ®

