Binary Rewriting at Runtime for Efficient Dynamic Domain Map Implementations

Josef Weidendorfer, Jens Breitbart
Department of Informatics
Technical University of Munich
Munich, Germany
EMail: {Josef.Weidendorfer, j.breitbart} @ tum.de

I. OVERVIEW

HPC programs are written with an obvious focus on
performance. Among others, they try to rely on static
work partitioning whenever possible, as this allows
for better compiler optimization and has inherently
less communication. However, with the need for more
and more sophisticated energy saving strategies, we
expect an upcoming growth in dynamics at hardware
level, resulting in more dynamic changes to clock
frequency and voltage. These changes will make dy-
namic (re)partitioning a requirement for all large scale
simulations, even those which originally could rely on
a static scheme. Dynamic workload partitioning (for
data parallel workloads) is typically represented by
abstracting the actual data distribution and have each
node query the distribution to identify which part of
the workload it has to compute. As repartitioning data
itself can be costly, the exact distribution stays constant
for some time. In this talk we will give a (very) brief
introduction into DBrew! (Dynamic Binary REWrit-
ing) [1], a library that allows for binary rewriting of
functions at runtime that we use to optimize code
for given data distributions. We furthermore present
preliminary results of applying it at small Chapel
programs and hope to start a discussion on how such
a feature could be integrated into the Chapel software
stack.

II. DBREW

DBREW is still in an early stage of its development
and the source is not yet available to the public, but
a release as open source is planned before IPDPS.
DBREWs target group is not application developers,
but rather tuning experts that for example use it as

"https://github.com/Irr-tum/dbrewhttps://github.com/Irr-tum/
dbrew

part of a runtime system. The most important feature of
DBREW is the specialization of functions for a given
set of parameters. As an input, dbrew_rewrite ()
expects a pointer to the function that should be special-
ized as well as the parameters for which the function
should be specialized. The result is a function pointer
that can be called as drop-in replacement of the original
function, using exactly the same signature. At runtime,
DBREW parses the binary machine code? of that func-
tion and uses the information of the constant values to
produce a specialized version. This version is typically
faster than the original code, but the exact benefit
varies between functions. DBREW also applies some
simple optimizations like function inlining. However,
we expect that the original code was already well
optimized by a compiler.

III. CHAPEL INTEGRATION

So far, we have applied DBREW to simple Chapel
programs that mostly consist of arrays with Domain
Maps and simple loops using the arrays. We added
DBREW by manually changing the C code generated
by the Chapel Compiler and used it to specialize the
function dsi_access2 () for a given data distribu-
tion. The generated code consist of 54% fewer in-
structions. The manual integration can obviously only
serve as a small testbed and we would like to gather
feedback on how to integrate DBREW into the Chapel
compiler/runtime to use it for larger tests.

REFERENCES

[1] J. Weidendorfer and J. Breitbart, “The case for binary
rewriting at runtime for efficient implementation of
high-level programming models in HPC,” in Proc. 2016
IEEE Int. Symp. Parallel and Distributed Processing
Workshops and Phd Forum, May 2016.

2Currently, x86-64 is supported.



