
C O M P U T E | S T O R E | A N A L Y Z E

The Use and I:
Transitivity of Module Uses and its Impact

Lydia Duncan, Cray Inc.
CHIUW 2016

May 27th, 2016

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

User Features

Copyright 2016 Cray Inc.
3

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
4

● Symbols visible to B via a ‘use’ also visible:
● within C’s main
● other uses of B module A {

var bar = 13;
proc foo() { … }

}
module B {
use A;

var baz = 19;
proc flip(x: int) { … }

}

module C {
var flop = 7;

proc main() {
use B;

flip(bar);
}

}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
5

● Symbols visible to B via a ‘use’ also visible to uses of B
● Best represented as a tree of ‘use’s

use B, C;

use D, E; use F, G;

A

B C

…
D E F G… … …

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
6

● Symbols visible to B via a ‘use’ also visible to uses of B
● Best represented as a tree of ‘use’s
● Each path in tree is a “use chain” (e.g. A->B->D, A->C->F)

use B, C;

use D, E; use F, G;

A

B C

…
D E F G… … …

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
7

● Symbols now visible to B also visible:
● within C’s main
● other uses of B module A {

var bar = 13;
proc foo() { … }

}
module B {
use A;

var baz = 19;
proc flip(x: int) { … }

}

module C {
var flop = 7;

proc main() {
use B;

flip(bar);
}

}

use B;

use A;

C

B

…
A

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
8

● Symbols visible to B via a ‘use’ also visible to uses of B
● Can avoid extra work

module A {
class foo { … }

}

module B {
use A;

proc foo.bar() { … }
} module C {

proc main() {
use B; // Instead of use A, B;

var baz = new foo();
// foo visible because B uses A
baz.bar();

}
}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
9

● Symbols visible to B via a ‘use’ also visible to uses of B
● Can avoid extra work
● But can lead to unexpected issues

● C’s writer might not notice use of A
module A {
var bar = 13;
proc foo() { … }

}
module B {
use A;

var baz = 19;
proc flip(x: int) { … }

}

module C {
var bar = 7;

proc main() {
use B;

flip(bar); // Finds A.bar, not C.bar
}

}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
10

● Symbols visible to B via a ‘use’ also visible to uses of B
● Can avoid extra work
● But can lead to unexpected issues
● Same issues can occur with just B

module B {
var bar = 19;
proc flip(x: int) { … }

}
module C {
var bar = 7;

proc main() {
use B;

flip(bar); // Finds B.bar, not C.bar
}

}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Import Control

Copyright 2016 Cray Inc.
11

● Chapel 1.13 adds import control for use statements
● ‘except’ keyword prevents unqualified access to symbols in list

use B except bar; // All of B’s symbols other than bar can be named directly
● ‘only’ keyword limits unqualified access to symbols in list

use B only flip; // Only B’s flip can be named directly

● Permits user to avoid importing unnecessary symbols
● Including symbols which cause conflicts

● Can rename imported symbols
use B only bar as baz;

// Can reference B.bar via baz

module B {
var bar = 19;
proc flip(x: int) { … }

}

module C {
var bar = 7;

proc main() {
use B except bar;

flip(bar); // Finds C.bar, not B.bar
}

}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Import Control

Copyright 2016 Cray Inc.
12

● Import control must affect all uses in use chain
● Would be equally incorrect to find A’s bar or B’s bar.

module A {
var bar = 13;
proc foo() { … }

}
module B {
use A;

var bar = 19;
proc flip(x: int) { … }

}

module C {
var bar = 7;

proc main() {
use B except bar;

flip(bar); // Finds C.bar
}

}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Import Control

Copyright 2016 Cray Inc.
13

● Nested import control must be considered
● Shouldn’t find symbols excluded by deeper import control

module A {
var bar = 13;
proc foo() { … }

}
module B {
use A only foo;

var goop = 19;
proc flip(x: int) { … }

}

module C {
var bar = 7;

proc main() {
use B except goop;

flip(bar); // Finds C.bar
}

}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Renaming

Copyright 2016 Cray Inc.
14

● Renaming a symbol should not allow access to old name

module A {
var bar = 13;
proc foo() { … }

}
module B {
use A;

var bar = 19;
proc flip(x: int) { … }

}

module C {
var bar = 7;

proc main() {
use B only bar as baz;

flip(bar); // Finds C.bar
}

}

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Renaming

Copyright 2016 Cray Inc.
15

● Renaming a symbol should not allow access to old name
● And nested renaming should not break this condition

module A {
var bar = 13;
proc foo() { … }

}
module B {
use A only bar as baz;

var goop = 19;
proc flip(x: int) { … }

}

module C {
var bar = 7;

proc main() {
use B only baz as biff;

flip(bar); // Finds C.bar
}

}

C O M P U T E | S T O R E | A N A L Y Z E

Compiler Implementation

Copyright 2016 Cray Inc.
16

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Transitive Uses

Copyright 2016 Cray Inc.
17

● Symbols visible to B via a ‘use’ also visible to uses of B
● Best represented as a tree of ‘use’s
● Each path in tree is a “use chain” (e.g. A->B->D, A->C->F)

use B, C;

use D, E; use F, G;

A

B C

…
D E F G… … …

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
18

● Scope resolution
● Handles variable, module name resolution
● Traverses in breadth-first order
● ‘Use’ tree built once per scope after module names resolved

● Traversed many times

use B, C;

use D, E; use F, G;

A

B C

…
D E F G… … …

Traversal order:
• A
• <gap>
• B
• C
• <gap>
• D
• E
• F
• G
• …

Implementation
ignored these
connections

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
19

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

use B except foo;

use D;

A

B

…
D

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
20

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

use B except foo;

use D except foo;

A

B

…
D

Note: In the case where
B is ‘use’d in multiple
‘use’ chains, these
modifications should not
be visible outside of the
‘use’ from A

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
21

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B except foo;

use D except bar;

A

B

…
D

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
22

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B except foo;

use D except bar, foo;

A

B

…
D

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Function Resolution

Copyright 2016 Cray Inc.
23

● Function resolution
● Handles functions, some field resolution

● Chooses best match from all matches at all visible scopes
● Traverses ‘use’s depth-first
● Later ‘use’s in chain accessed through earlier ‘use’s

use B, C;

use D, E; use F, G;

A

B C

…
D E F G… … …

Traversal order:
• A
• B
• D
• E
• C
• F
• G
• …

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Function Resolution

Copyright 2016 Cray Inc.
24

● Can determine whether to follow a ‘use’ chain
● If ‘except’ or ‘only’ list precludes desired name, skip that branch
● Single check saves compilation time

use B only bar;
use C;

use D, E; use F, G;

A

B C

…
D E F G… … …

Traversal order:
• A
• B
• D
• E
• C
• F
• G
• …

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Conclusions

Copyright 2016 Cray Inc.
25

● Control over ‘use’ transitivity should be in user’s hands
● Module designer has best knowledge of symbols to expose/hide
● Intend to provide via reuse of ‘public’/‘private’ keywords

private use M;

public use N;

● Starting from “transitive by default” was beneficial
● Design of features forced to account for transitivity immediately
● Found tricky cases early

● Still deciding on default behavior

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

26

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Private and Public

Copyright 2016 Cray Inc.
28

● Declaring symbol “private” impacts outside access
● No explicit naming allowed from outer scope
● ‘Use’ will not allow unqualified access of symbol either
● Still visible from scopes nested within defining scope

private var foo = …;

proc bar() { … } // Can reference foo within bar, etc.

● Implementation:
● Same check on symbol match visibility used in both passes

● Scope resolve looks at further ‘use’ depth if only private symbols found
● Function resolution merely avoids that match

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
29

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B except foo;

use D only bar;

A

B

…
D

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
30

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B except foo;

use D only bar;

A

B

…
D

If an outer ‘except’ list is
distinct from an inner
‘only’ list, the ‘only’ list
will be unchanged

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
31

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B only foo;

use D except bar;

A

B

…
D

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
32

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B only foo;

use D only foo;

A

B

…
D

If an outer ‘only’ list is
distinct from an inner
‘except’ list, the ‘only’ list
will replace the ‘except’ list.

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
33

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B only foo;

use D only bar;

A

B

…
D

C O M P U T E | S T O R E | A N A L Y Z E

The Use and I: Scope Resolve

Copyright 2016 Cray Inc.
34

● With ‘except’ and ‘only’ keyword, ‘use’ chains matter more
● Earlier limits should affect search of later modules in chain
● Need to apply these limits when creating ‘use’ tree

● This can get tricky when multiple limits are present

use B only foo;

use D only ;

A

B

…
D

If an outer ‘only’ list is
distinct from an inner
‘only’ list, it will be as if
that ‘use’ does not occur.

And any overlap will be
handled appropriately

