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Motivation: Building a better Chapel

 Evaluate how well Chapel performs in practice.

 Comparison of Chapel benchmark performance against 

implementations in competitive parallel frameworks.

 Identify opportunities to improve language performance.

 Goals: Investigating techniques to

 Improve development practices for Chapel programmers.

 Automate solutions that could be incorporated into future 

versions of the Chapel compiler and runtime framework.

 We will focus on single-locale environments.
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Strategy

 Use benchmarks

 Represent real world scientific computing applications

 Embodies different usage of language features

 Performance tuning

 Profile benchmarks to identify bottlenecks in performance.

 Analyze performance gaps between parallel frameworks.

 Determine where changes are needed to close gaps.

 Generalize the lessons learned.

 Improvement over original and competitive benchmark

 Impact across other Chapel benchmarks
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LULESH Overview and Pitfalls

 LULESH is a ’shock hydro’ parallel benchmark 

designed for hydrodynamics calculations.

 Large array declarations inside subroutines: 

 Translate into large heap allocation requests.

 Write operations are performed to set all elements to zero

 Occurs each time the function is invoked.

Lulesh.chpl (1695 lines)

CalcHourglassControlForElems()

proc CalcHourglassControlForElems(determ) {

var dvdx, dvdy, dvdz, x8n, y8n, z8n: [Elems] 8∗real;

forall eli in Elems {

...

}

...

}

18.8% of the wall time is spent 

on one line of code in the 

sequential part of the program.
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LULESH Insights

 Hoisting

 Store recurring requests of large local allocation for reuse.

 Additionally store allocations of all compiler generated 
metadata structures related to each memory allocation.

 Conservative Memory Initialization

 For each allocation, does there exist an entry in the 
subsequent code that is read prior to being set explicitly?

 Static analysis: determine when to invoke calloc vs. 
malloc and memset for memory reuse in generated code

 Provide optional compiler support for language 
feature similar to static in C.

 Avoid having to use globals.

proc foo() {

persistent var a: [dom] int;

...
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LULESH Performance
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MiniMD Overview, Pitfalls, and Insights

 Mini parallel benchmark for Molecular Dynamics

 Avoid repetitive mapping from one domain to 
another when iterating over nested loops.

 Remove unnecessary autoCopy / autoDestroy calls

 Found inside ‘coforall_fn_chpl#’ loops generated from the 
parallel loops of ‘Build Neighbors’ and ‘ForceLJ compute’

UpdateFluff()

Original Optimized

forall (P,D,S) in zip (PosOffset,

Dest, Src) {

Pos[D] = Pos[S];

Count[D] = Count[S];

// offset positions

forall d in D do

Pos[d][1..Count[d]] += P;

forall (P,D,S) in zip (PosOffset,

Dest, Src) {

forall (d, s) in zip (D,S) do {

Pos[d] = Pos[s];

Count[d] = Count[s];

for i in 1..Count[d] do {

Pos[d][i] += P;

}

7



MiniMD Performance
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SSCA#2 Overview and Implementations

 Scalable Synthetic Compact Applications #2

 Generates weighted, directed multigraph.

 Performs approximate betweenness centrality (BC).

 Chapel vs. OpenMP version of SSCA#2

 Different approaches to betweennessCentrality()

 Developed ports to achieve a more fair comparison. 

 Each version of the benchmark was ported to the 

other framework respectively.

 Algorithm I:  Chapel benchmark

 Algorithm II: OpenMP benchmark

9



SSCA#2 Pitfalls and Insights: Alg. I

 Algorithm I was not optimized for single-locale.

 One task private variable (TPV) data structure per core 

instead of per locale.

 Managing parallel redundancies in nested loops.

 User specific thread initialization for nested loops.

 Removing the need for task private data management 

could improve parallel loop performance by 12% or more.

 Selectively disable redundant memory initializations 

‘init_elts#’ found in ‘initialize#’ in the generated code.

 Shown to improve performance of other benchmarks too

10



SSCA#2 Pitfalls and Insights: Alg. II

 Initial port into Chapel performed 4.9x slower

 Overhead of parallelization in BC: 46% of overall BC time

 Up to 54.5% of parallel time in BC was spent on variable 

synchronizations (locks)

 Fluctuating number of iterations in BC inner loops

 Non-uniform workload distribution

 Developed a proxy to model parallelization of BC.

 Overhead of parallel loops nested inside sequential loops

 Compare uniform and non-uniform workload performance

 Comparisons between parallel frameworks.
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SSCA#2 Insights: Alg. II

 BC proxy lessons learned:

 Non-uniform workloads

 Chapel: 4.7x slower, OpenMP: unaffected

 Chapel performance on par with OpenMP (static,1 scheduler)

 No usage of #pragma omp parallel: 28x slower

 Chapel: parallelizing outer loop instead: 15% speed up

 Application towards BC in Chapel port (Alg. II)

 Parallelize the outermost loop over starting vertices:

 Reduces the sequential parts of BC and parallel overhead.

 Allows for the removal of most synchronization variables.
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CLOMP Overview and Pitfalls

 Coral Collaboration Benchmark Codes

 CLOMP: C version of Livermore OMP benchmark

 Skeleton benchmark for measuring the overhead of 
different OpenMP primitives.

 Sequential loop test: serial

 Parallel loop tests: static, dynamic, and manual

 Chapel benchmark

 Ported serial and a generic version of parallel loop test.

 Chapel does not allow for explicit thread control.

 Redundant memory initializations; Memory structure

14



CLOMP Performance
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Overlap and Impact of Bottlenecks

X: Major impact,  x: Minor impact 

Degradation LULESH MiniMD SSCA#2 CLOMP

Reoccurring local allocations X

Thread / task private allocations X

Adaptive memory reset x

Redundant memory init_elts# x x x X

Redundant autoCopy / autoDestroy x x

Redundant parallelism x

Domain remapping overhead X

Application bottleneck X

Memory structure X
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Conclusion

 Future work

 Explore Chapel performance and develop optimization 
strategies for inter-node (multi-locale) environments.

 Task delegation and memory localization over PGAS

 Communication access patterns

 Remote prefetch and caching

 Automate optimizations in Chapel reference compiler.

Benchmark Original Chapel OpenMP

LULESH 3.0x 2.0x

MiniMD 5.3x 0.4x

SSCA#2 (I) 6.3x On par

SSCA#2 (II) 7.9x 1.6x

CLOMP 4.8x 1.7x

Performance 

gain over:
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