
Optimizing Chapel for Intra-Node,

Multi-Core Environments

Richard Johnson and Jeff Hollingsworth
Department of Computer Science, University of Maryland, College Park

CHIUW

05/27/2016

Motivation: Building a better Chapel

 Evaluate how well Chapel performs in practice.

 Comparison of Chapel benchmark performance against

implementations in competitive parallel frameworks.

 Identify opportunities to improve language performance.

 Goals: Investigating techniques to

 Improve development practices for Chapel programmers.

 Automate solutions that could be incorporated into future

versions of the Chapel compiler and runtime framework.

 We will focus on single-locale environments.

2

Strategy

 Use benchmarks

 Represent real world scientific computing applications

 Embodies different usage of language features

 Performance tuning

 Profile benchmarks to identify bottlenecks in performance.

 Analyze performance gaps between parallel frameworks.

 Determine where changes are needed to close gaps.

 Generalize the lessons learned.

 Improvement over original and competitive benchmark

 Impact across other Chapel benchmarks

3

LULESH Overview and Pitfalls

 LULESH is a ’shock hydro’ parallel benchmark

designed for hydrodynamics calculations.

 Large array declarations inside subroutines:

 Translate into large heap allocation requests.

 Write operations are performed to set all elements to zero

 Occurs each time the function is invoked.

Lulesh.chpl (1695 lines)

CalcHourglassControlForElems()

proc CalcHourglassControlForElems(determ) {

var dvdx, dvdy, dvdz, x8n, y8n, z8n: [Elems] 8∗real;

forall eli in Elems {

...

}

...

}

18.8% of the wall time is spent

on one line of code in the

sequential part of the program.

Allocation

Invocation

Process

Deallocatio

n

R
in

s
e

 a
n

d
 R

e
p

e
a

t

4

LULESH Insights

 Hoisting

 Store recurring requests of large local allocation for reuse.

 Additionally store allocations of all compiler generated
metadata structures related to each memory allocation.

 Conservative Memory Initialization

 For each allocation, does there exist an entry in the
subsequent code that is read prior to being set explicitly?

 Static analysis: determine when to invoke calloc vs.
malloc and memset for memory reuse in generated code

 Provide optional compiler support for language
feature similar to static in C.

 Avoid having to use globals.

proc foo() {

persistent var a: [dom] int;

...

5

LULESH Performance

1.10

0.71

1.54

1.00

3.01

1.96

Speedup over Original in Chapel Speedup over OpenMP in C++

Allocation Hoising (AH)

AH + Conservative Memory Init (CMI)

Metadata Hoisting (MH) + AH + CMI

6

MiniMD Overview, Pitfalls, and Insights

 Mini parallel benchmark for Molecular Dynamics

 Avoid repetitive mapping from one domain to
another when iterating over nested loops.

 Remove unnecessary autoCopy / autoDestroy calls

 Found inside ‘coforall_fn_chpl#’ loops generated from the
parallel loops of ‘Build Neighbors’ and ‘ForceLJ compute’

UpdateFluff()

Original Optimized

forall (P,D,S) in zip (PosOffset,

Dest, Src) {

Pos[D] = Pos[S];

Count[D] = Count[S];

// offset positions

forall d in D do

Pos[d][1..Count[d]] += P;

forall (P,D,S) in zip (PosOffset,

Dest, Src) {

forall (d, s) in zip (D,S) do {

Pos[d] = Pos[s];

Count[d] = Count[s];

for i in 1..Count[d] do {

Pos[d][i] += P;

}

7

MiniMD Performance

0

100

200

300

400

500

600

Original Optimized OpenMP

Remaining

Update

ForceLJ Compute

Build Neighbor

E
la

p
s
e
d

 T
im

e
 (

s
e
c
)

8

SSCA#2 Overview and Implementations

 Scalable Synthetic Compact Applications #2

 Generates weighted, directed multigraph.

 Performs approximate betweenness centrality (BC).

 Chapel vs. OpenMP version of SSCA#2

 Different approaches to betweennessCentrality()

 Developed ports to achieve a more fair comparison.

 Each version of the benchmark was ported to the

other framework respectively.

 Algorithm I: Chapel benchmark

 Algorithm II: OpenMP benchmark

9

SSCA#2 Pitfalls and Insights: Alg. I

 Algorithm I was not optimized for single-locale.

 One task private variable (TPV) data structure per core

instead of per locale.

 Managing parallel redundancies in nested loops.

 User specific thread initialization for nested loops.

 Removing the need for task private data management

could improve parallel loop performance by 12% or more.

 Selectively disable redundant memory initializations

‘init_elts#’ found in ‘initialize#’ in the generated code.

 Shown to improve performance of other benchmarks too

10

SSCA#2 Pitfalls and Insights: Alg. II

 Initial port into Chapel performed 4.9x slower

 Overhead of parallelization in BC: 46% of overall BC time

 Up to 54.5% of parallel time in BC was spent on variable

synchronizations (locks)

 Fluctuating number of iterations in BC inner loops

 Non-uniform workload distribution

 Developed a proxy to model parallelization of BC.

 Overhead of parallel loops nested inside sequential loops

 Compare uniform and non-uniform workload performance

 Comparisons between parallel frameworks.

11

SSCA#2 Insights: Alg. II

 BC proxy lessons learned:

 Non-uniform workloads

 Chapel: 4.7x slower, OpenMP: unaffected

 Chapel performance on par with OpenMP (static,1 scheduler)

 No usage of #pragma omp parallel: 28x slower

 Chapel: parallelizing outer loop instead: 15% speed up

 Application towards BC in Chapel port (Alg. II)

 Parallelize the outermost loop over starting vertices:

 Reduces the sequential parts of BC and parallel overhead.

 Allows for the removal of most synchronization variables.

12

0

5

10

15

20

25

16

OpenMP Port Chapel Opt OpenMP Chapel Opt Port

E
la

p
s
e
d

 T
im

e
 (

s
e
c
)

Problem Size

SSCA#2 Performance

0

0.5

1

1.5

2

2.5

12

0

50

100

150

200

250

20

Algorithm I Algorithm II

13

CLOMP Overview and Pitfalls

 Coral Collaboration Benchmark Codes

 CLOMP: C version of Livermore OMP benchmark

 Skeleton benchmark for measuring the overhead of
different OpenMP primitives.

 Sequential loop test: serial

 Parallel loop tests: static, dynamic, and manual

 Chapel benchmark

 Ported serial and a generic version of parallel loop test.

 Chapel does not allow for explicit thread control.

 Redundant memory initializations; Memory structure

14

CLOMP Performance

0

2

4

6

8

10

12

14

16

18

12
640000

65536
10

1024
640000

65536
6400

E
la

p
s
e
d

 T
im

e
 (

s
e
c
)

Problem Size

OpenMP(linked lists)

Chapel Port (arrays)

OpenMP(matrix)

Chapel Port (matrix)

Zones per Part

Parts

15

Overlap and Impact of Bottlenecks

X: Major impact, x: Minor impact

Degradation LULESH MiniMD SSCA#2 CLOMP

Reoccurring local allocations X

Thread / task private allocations X

Adaptive memory reset x

Redundant memory init_elts# x x x X

Redundant autoCopy / autoDestroy x x

Redundant parallelism x

Domain remapping overhead X

Application bottleneck X

Memory structure X

16

Conclusion

 Future work

 Explore Chapel performance and develop optimization
strategies for inter-node (multi-locale) environments.

 Task delegation and memory localization over PGAS

 Communication access patterns

 Remote prefetch and caching

 Automate optimizations in Chapel reference compiler.

Benchmark Original Chapel OpenMP

LULESH 3.0x 2.0x

MiniMD 5.3x 0.4x

SSCA#2 (I) 6.3x On par

SSCA#2 (II) 7.9x 1.6x

CLOMP 4.8x 1.7x

Performance

gain over:

17

