
Chapel in the 
(Cosmological) 
Wild
Nikhil Padmanabhan

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



About…

• My day job is as an astrophysicist, specializing in cosmology

• A Chapel enthusiast

 Bumped into Chapel early in its (public) existence

 Was intrigued, but not compelled. 

 Revisited around 1.10

 Language looked more polished/stable

 Met up with Brad Chamberlain, discussed interest

 FFTW

 One use case to date, a few proof-of-principle applications

 1.13+ now has most bits that I need, hoping to use more broadly

• Performance is important, but so is ease of prototyping new ideas

 Happy to take a ~x2 hit over a well-tuned case

 Absolute “wall”-time matters; often the distinction between 1 min vs 1 s vs 1 
ms does not matter (I can’t think that fast!)

 But sometimes it does – so important to be able to find slow steps to optimize

• C++/Mathematica/Python are my usual tools

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Warnings!

• I’m not trained in CS, nor am I a “computational scientist”

 Code is just a means to an end…

 Expect to see non-optimal code

• These slides have not been vetted by the Chapel team

 Although they’ve helped significantly in lots of the Chapel code I’ve written 

 Brad Chamberlain, Michael Ferguson, Ben Harshbarger

 Mistakes are all mine

 Some slow code may not be Chapel’s fault, but mine!

• Not my usual patter, so apologies in advance for any glitches…

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



A cosmological constant

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



His biggest blunder?

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



A big surprise : an accelerating Universe

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Cosmic cartography

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Cosmic cartography

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

www.sdss3.org



Constructing a Standard Ruler
Begin : hot “soup” of 

electrons, photons

A sound wave starts.

Shell expands at speed 

of sound 0.578c

Universe “freezes” 300,000 yrs ABB.

“Ripple” frozen in.

A standard ruler

Statistical in nature



Measuring The Ruler : Galaxies 

A preferred scale for galaxy 

separations

www.sdss3.org

Eisenstein et al, 2006



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5

M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5

M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5

M

Measure 

redshifts

3D Map



What kinds of computations
• Often the question isn’t one of implementation, it’s the question

• Simulations of the formation of structure in the galaxy distribution
 See Katrin Heitmann’s keynote talk yesterday 

 Performance matters!

• Characterize spatial distributions of galaxies
 N-point functions

 Find groups/clusters of galaxies

 Simplest algorithms here are analogous to N-body calculations

• Potential/force calculations

 Solving variants of the Poisson equation

 FFTs

 Multigrid

• Simulations

 We observe a random realization from all possible Universes.

 Theory predicts averaged quantities

 Need to understand the distributions

 Need to repeat calculations many times

• Many computations are embarrassingly parallel!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Why Chapel? And not something else?

• Python?

 Python works well when doing well optimized tasks

 Great ecosystem – lots of users

 Not so good when first statement is not true.

 Sometimes forces you to use unnatural idioms for tasks (a for loop is 
sometimes the simplest answer)

 Memory/temporaries

• C++/MPI?

 C++11/14 is getting quite high-level

 Performance

 OpenMP/MPI is well-established, good tooling

 MPI is rather verbose/tedious, especially for simple tasks

 Still no native multidimensional support

• Chapel?

 Promise of easy abstractions for parallelism

 Promise of performance

 Domains are GREAT!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



A Particle-Mesh Code

• “Toy” problem

 There are more efficient/accurate algorithms

 The pieces are quite reusable

• Particles 

 Track the distribution of matter

 Evolve under gravity

• Mesh

 Used to accelerate gravity calculation by solving Poisson’s equation on a grid

 Thin wrapper around FFTW

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Setup

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

Config parameters are great – no longer need to parse input files

(reproducibility – saving all config parameters?)

Domains are very expressive (handle FFTW storage)



Grid deposition

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Velocity updates

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



NAS Multigrid example

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

Exercise stencil calculations

Uses StencilDist

Thanks to Ben Harshbarger, Brad Chamberlain

Elegant, but slow (> 10x slower than benchmark)



NAS Multigrid -- Speedup

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

Within x3 of benchmark, both OpenMP and 

single thread. “Easy” to parallelize….



Interoperability is important

• Any new language must be able to interface with existing code

 This is, in part, responsible for the success of Python – wrappers to existing C 
code

• Most such interfaces are too domain specific to be of general interest

 These don’t need to be general Chapel packages

• An FFI should be lightweight and easy for the end-user.

• Chapel has a compelling C story here.

• Some examples :

 FFTW (Fourier Transforms – my first real introduction to Chapel)

 GNU Scientific Library (GSL)

 MPI

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Interfacing to GSL

• GNU Scientific Library 

• Collection of common numeric algorithms (special functions, 
interpolation, random numbers and distributions, integration, etc)

• Large package, many headers

• Chapel’s “extern block” supports these natively (thanks to Michael 
Ferguson, who fixed a few issues remaining in 1.13)

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

http://www.gnu.org/software/gsl/



Interfacing to GSL

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

• The C-API is exposed (no better 

or worse than calls in C)

• Some calls can be a little verbose 

• Not hard for the user to wrap as 

needed, to improve interfacing



A rough edge : callbacks into Chapel

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

A specific use case : integrating a function



Chapel + MPI

• A large number of scientific/numerical packages are built off MPI

 Chapel needs to interop with these

• Performance

 Currently (and anecdotally), single locale programs run slower in multi-locale 
mode, even if minimal/no communication 

 Big hit for otherwise trivially parallelizable jobs

 Use MPI to fix this

• Parallel programming idioms are often taught with MPI

 Use Chapel for convenience/productivity

 MPI for performance

• MPI 1.1 (mostly) support upcoming

 Currently on master

 Wrapper mostly auto-generated by a simple Python script + Python-C parser 
(pycparser : https://github.com/eliben/pycparser)

 Currently designed for Chapel in single-locale mode

 Hopefully, can be extended to Chapel in multi-locale mode 

 GASNet already allows for MPI interop

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

https://github.com/eliben/pycparser


Chapel + MPI : Hello, Chapel!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

The MPI module does the initialization; currently requires a 

call to MPI_Finalize().



Chapel + MPI : Ring communication

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Chapel + MPI : More complicated

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Interactive Chapel?

• The challenge is often not implementation, but what to implement…

• Trial and error

• Interactivity is a good thing

 Python/Mathematica/MatLab etc do this very well

 Jupyter notebooks are becoming very popular

• Chapel needs an interactivity story

 Cling : CERN’s implementation of a C++ REPL, based of Clang/LLVM

 Doesn’t have to be pure Chapel

 Eg. a maintained Python interface (this is the mode in which I use Python –
interfacing into C, thanks to tools like Cython)

 A Python interface could also ease people into Chapel

 Easy access to Python package ecosystem

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Tooling?

• Debugging/profiling using standard tools hard, because of the C 
translation

• Tedious to track down performance issues

 I’d love to be able to quickly see where a program is spending most of its time 
in a semi-automated manner (i.e. not print statements)

 Could be at a line/function level (for functions, need to handle inlining)

• Compiler is slow; error messages one at a time

• Rebuild the world from scratch each time around

• Chapel idioms

 It’s easy to write Chapel code like C, harder to determine what better idioms 
are. 

 Flag what idioms are currently slow, and how to optimize when necessary

 Eg. When reduce works, when array accesses might be slow etc

 Maybe time for a Chapel Cookbook!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Some final thoughts

• Chapel is fun to use…

• If I were the only person writing the code, I’d probably use Chapel a 
significant portion of time…

 A year ago, that would not have been true

 Missing interactivity, tooling…

 Compiler speed

• The Chapel team has been wonderfully responsive -- thanks!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6


