Chapel 1n the
(Cosmological)

Wild

Nikhil Padmanabhan

About...

- My day job i1s as an astrophysicist, specializing in cosmology

2 June 2016

- A Chapel enthusiast
* Bumped into Chapel early in its (public) existence
+ Was intrigued, but not compelled.

- Revisited around 1.10
- Language looked more polished/stable
+ Met up with Brad Chamberlain, discussed interest
- FFTW
* One use case to date, a few proof-of-principle applications
+ 1.13+ now has most bits that I need, hoping to use more broadly

- Performance 1s important, but so 1s ease of prototyping new ideas
- Happy to take a ~x2 hit over a well-tuned case

« Absolute “wall”’-time matters; often the distinction between 1 minvs 1 svs 1
ms does not matter (I can’t think that fast!)

- But sometimes it does — so important to be able to find slow steps to optimize

©
—
o
N
=
=
s
@)

- C++/Mathematica/Python are my usual tools

Warnings!

- I’'m not trained in CS, nor am I a “computational scientist”
* Code 1s just a means to an end...
- Expect to see non-optimal code

- These slides have not been vetted by the Chapel team
-+ Although they’ve helped significantly in lots of the Chapel code I've written
* Brad Chamberlain, Michael Ferguson, Ben Harshbarger
- Mistakes are all mine
* Some slow code may not be Chapel’s fault, but mine!

- Not my usual patter, so apologies in advance for any glitches...

2 June 2016

©
—
o
N
=
=
s
@)

A cosmological constant

Ri=)",
8y

(P~

e e
I By b
AN
PRI UL L '
" >

2 June 2016

CHIUW 2016

ol
o

Log Velocity
g
Ly

12 14 16 18

Edwin Hubble

o et ““-.: Mt. Wilson

S e
e Telescope

o

2 June 2016

©
—
o
N
=
=
s
@)

Hi

By aalt
:fl" ¥ %ﬁ'
AN
UK A
s T
'

biggest blunder?

k. AV
0%

2 June 2016

CHIUW 2016

° ° ° ° ©
A big surprise : an accelerating Universe
g
E
! 26 ‘ -
o 0.00011 » Supernova Cosmology
&= gzl Project
Z 241" 5 High-Z Supernova L BpT
E 0.001F Search 0 = Vey!
< 22| N
o ® Hamuy et al. & b,
A 001k P
= 20+ Q) —~
E | L . \‘_‘\\ X g//’/}/ 4 E}
= A | 04 06 1 e I
S 011 é = & \\t"Qb é
Y gl Z 191 %% " §§ ~
Pt \.\
ﬁ 14 ~ . . §/ / ,/\\ oV
= 0.01 [0.02 004 0. s
= -
= 22 - Accelerating
% universe ‘
M 7
O 21 7= Decelerating =
REFERENCE: universe %
Saul Perimutter, E
Physics Today, 20 | | O
April 2003, pp. 0.4 0.6 1.0

53-60. ' REDSHIFT 2

Afterglow Light
Pattern
375,000 yrs.

Inflation_

Fluctuations

Dark Energy
Accelerated Expansion

Dark Ages Development of
Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years

NASA/WMAP Science Team

2 June 2016

CHIUW 2016

Cosmic cartography

Original in the John Carter Brown Library at Brown University

2 June 2016

CHIUW 2016

910¢ ?unf g 9108 MNTHD

www.sdss3.org

>
S
oF
v’
P
o0
@)
+

Cosmic car

Constructing a Standard Ruler

Begin : hot “soup” of
electrons, photons Shell expands at speed

A sound wave starts. of sound 0.578c

Universe “freezes” 300,000 yrs ABB.
“Ripple” frozen 1n.

A standard ruler

Statistical in nature

Measuring The Ruler : Galaxies

A preferred scale for galaxy
separations

www.sdss3.org

Eisengﬁceinl etlal, I006

C y] 1]

150 | -]

S 100 = .
5 C]
c L |
=] N 1
c 50 - 1 =)
2 - — O h? =012 ‘ 1
E - ' —~
Q - A -
S O .; o S),nhz =0.13 } —-'
- — Q h2=014 .

N —— No bao =

-50 [. 1
_]OO C l 1 1 1 l 1 I 1 [l—
10 20 40 60 80 100 200

Co-moving separation (h™' Mpc)

Constructing a galaxy survey

aged 14K
of sky)
2Cts

S-1/11 imaged 14K
eg (1/3 of sky)
on objects

rted

Spectra

oov at a time

Constructing a galaxy survey

imaged 14K
3 of sky)
Djects

1000 at a time

Construc

SDSS-I/lIl imaged 14K
sq. deg (1/3 of sky)

~ billion objects
detected

1.5M

Select objects

3D Map Get Spectra

SR ATALAND

1000 at a time

Constructing a galaxy survey

1000 at a time

Constructing a galaxy survey

S-I/ll imaged 14K
leg (1/3 of sky)
ion objects

cted

n 1.5
M

ct objects

“Spectra

'T‘ | 1uuy at a time

What kinds of computations

2 June 2016

- Often the question 1sn’t one of implementation, 1t’s the question

- Simulations of the formation of structure in the galaxy distribution
- See Katrin Heitmann’s keynote talk yesterday
* Performance matters!

- Characterize spatial distributions of galaxies
* N-point functions
+ Find groups/clusters of galaxies
- Simplest algorithms here are analogous to N-body calculations

- Potential/force calculations
- Solving variants of the Poisson equation
- FFTs
* Multigrid

- Simulations
- We observe a random realization from all possible Universes.
+ Theory predicts averaged quantities
* Need to understand the distributions
- Need to repeat calculations many times

©
—
o
N
=
=
s
@)

- Many computations are embarrassingly parallel!

Why Chapel? And not something else?

- Python?

« Python works well when doing well optimized tasks

2 June 2016

« Great ecosystem — lots of users
« Not so good when first statement is not true.

* Sometimes forces you to use unnatural idioms for tasks (a for loop is
sometimes the simplest answer)

+ Memory/temporaries

- C++/MPI?
« C++11/14 1s getting quite high-level
* Performance
* OpenMP/MPI is well-established, good tooling
- MPI 1s rather verbose/tedious, especially for simple tasks

+ Still no native multidimensional support

- Chapel?

* Promise of easy abstractions for parallelism

©
—
o
N
=
=
s
(@)

* Promise of performance
* Domains are GREAT!

A Particle-Mesh Code

- “Toy” problem
- There are more efficient/accurate algorithms

2 June 2016

- The pieces are quite reusable

- Particles
« Track the distribution of matter

- Evolve under gravity

- Mesh

+ Used to accelerate gravity calculation by solving Poisson’s equation on a grid
* Thin wrapper around FFTW

©
—
o
N
=
=
s
@)

config const N=128;

const Nhalf=(N/2+1);

const FullD = {@.. #N, O0.. #N, 0.. #(2*Nhalf)};

const RealD = FullD[..,..,0.. #N];

const ReD = FullD[..,..,0.. #(2*Nhalf) by 2];

const ImD = FullD[..,..,0.. #(2*Nhalf) by 2 align 1];

const FregD = FullD[..,..,0.. #Nhalf];
const Ntot = N**3;

config const Lbox=2000.0;

Config parameters are great — no longer need to parse input files
(reproducibility — saving all config parameters?)

Domains are very expressive (handle FFTW storage)

2 June 2016

CHIUW 2016

Grid deposition

forall ipart in particles {

var ndx : NDim*int;

for i1 in Dimsl1l do ndx(ii) = floor(ipart(ii)) : int;

var dlo, dhi : NDim*real(64);
dhi = ipart - ndx;

dlo = (1,1,1) - dhi;

var (ii,jj,kk) = ndx;

tmp[ii , J3 , kk

tmp[ii , J3 , (kk+1)%N
tmp[ii , (JJ+1)%N, kk

tmp[ii , (JJ+1)%N, (kk+1)%N
tmp[(11+1)%N, Jj , kk

tmp[(11+1)%N, JJ , (kk+1)%N
tmp[(ii+1)%N, (jj+1)%N, kk

tmp[(11+1)%N, (7jj+1)%N, (kk+1)%N

ed e e e e e e e

.add(dlo(1)*dlo(2)*dlo(3));

add(dlo(1)*dlo(2)*dhi(3));

.add(dlo(1)*dhi(2)*dlo(3));

add(dlo(1)*dhi(2)*dhi(3));

.add(dhi(1)*dlo(2)*dlo(3));

add(dhi(1)*dlo(2)*dhi(3));

.add(dhi(1)*dhi(2)*d1lo(3));

add(dhi(1)*dhi(2)*dhi(3));

2 June 2016

CHIUW 2016

Velocity updates

for idim in 1..NDim {

forall (f, phire, phiim, psire, psiim) in zip(FreqD, phi[ReD], phi[ImD], psi[ReD], psi[ImD]) {
var ki = index2k(f)(idim);
psire = -ki*phiim;
psiim = ki*phire;

}

grid.psi_c2r();

psi /= Ntot;

var psix = inverseCIC(real(32), psi, pos);

forall (pl, psil) in zip(vel, psix) do pl(idim) += fac*psil;

writeln("Processed momenta in dimension...",idim);

2 June 2016

CHIUW 2016

NAS Multigrid example

MGStencil={-1..1,

Exercise stencil calculations “1..1,
Uses StencilDist
Thanks to Ben Harshbarger, Brad Chamberlain -1..1},

inline proc stencilConvolve(dest : [?Dom] real, src : []real, w : coeff,
param inc : bool = false, param stride : int=1) {
var w3d : [MGStencil] real;
[(i,7,k) in MGStencil] w3d[i,j,k] = w[(i!=0) + (j!=0) + (k!=0)];

const N1 = src.domain.dim(1).high + 1;
src.updateFluff();

forall ijk in Dom {
var tmp = + reduce [off in MGStencil] (src[stride*ijk+off]*w3d[off]);
if inc then
dest[ijk] += tmp;
else
dest[ijk] = tmp;

Elegant, but slow (> 10x slower than benchmark)

2 June 2016

CHIUW 2016

NAS Multigrid -- Speedup

var locdom = dest.localSubdomain();
var locdom2 = {locdom.dim(1),locdom.dim(2)},
locdom3 = locdom.dim(3);
const klo = locdom3.low,
khi locdom3.high;
forall (i1,j1) in locdom2 {

dest.localAccess[il,j1,klo-1] 0.0;
dest.localAccess[il, j1,khi+1] 0.9;
if linc {
[k1 in locdom3] dest.localAccess[il,j1,kl1l] = 0.0;
}
for k1 in vectorizeOnly(klo..khi) {
var val = src.localAccess[il,j1,k1];
var vall = src.localAccess[il+1,]jl1,kl1]+src.localAccess[il-1,j1,k1]+
src.localAccess[il,j1+1,k1]+src.localAccess[il,j1-1,k1];
var val2 = src.localAccess[il1+1,j1+1,k1]+src.localAccess[il-1,j1+1,k1]+
src.localAccess[i1+1,j1-1,k1]+src.localAccess[il-1,j1-1,k1];
dest[il,j1,k1] += wl@*val + wl*vall + w2*val2;
var tmp = wl*val + w2*vall + w3*val2;
dest.localAccess[il,j1,k1-1] += tmp;
dest.localAccess[il,j1,k1+1] += tmp;

dest.localAccess[il,j1,klo] += dest.localAccess[il,j1,khi+1];
dest.localAccess[il,j1,khi] += dest.localAccess[il,jl1,klo-1];

Within x3 of benchmark, both OpenMP and
single thread. “Easy” to parallelize....

2 June 2016

CHIUW 2016

2 June 2016

Interoperability 1s important

- Any new language must be able to interface with existing code

+ This 1s, in part, responsible for the success of Python — wrappers to existing C
code

- Most such interfaces are too domain specific to be of general interest
* These don’t need to be general Chapel packages

- An FFI should be lightweight and easy for the end-user.
- Chapel has a compelling C story here.

- Some examples :
« FFTW (Fourier Transforms — my first real introduction to Chapel)
* GNU Scientific Library (GSL)
- MPI

©
—
o
N
=
=
s
@)

Interfacing to GSL

GNU Scientific Library

Collection of common numeric algorithms (special functions,
interpolation, random numbers and distributions, integration, etc)

Large package, many headers

Chapel’s “extern block” supports these natively (thanks to Michael
Ferguson, who fixed a few issues remaining in 1.13)

The library provides a wide range of mathematical routines such as random number generators, special functions and least-squares fitting. There are over
1000 functions in total with an extensive test suite.

The complete range of subject areas covered by the library includes,

Complex Numbers

Special Functions
Permutations

BLAS Support
Eigensystems

Quadrature

Quasi-Random Sequences
Statistics

N-Tuples

Simulated Annealing
Interpolation

Chebyshev Approximation
Discrete Hankel Transforms
Minimization

Physical Constants
Discrete Wavelet Transforms
Running Statistics

Roots of Polynomials
Vectors and Matrices
Sorting

Linear Algebra

Fast Fourier Transforms
Random Numbers
Random Distributions
Histograms

Monte Carlo Integration
Differential Equations
Numerical Differentiation
Series Acceleration
Root-Finding
Least-Squares Fitting
|EEE Floating-Point
Basis splines

Sparse Matrices and Linear Algebra

http://[www.gnu.org/software/gsl/

2 June 2016

©
—
o
N
=
=
s
@)

Interfacing to GSL

extern {
#include
#include
#include
#include
#include

#include

#include

#include

}

use SysCTypes;
require '-1gsl','-1gslcblas’;

"gsl/gsl const.h"
"gsl/gsl _integration.h"
"gsl/gsl_rng.h"
"gsl/gsl randist.h"

"gsl/gsl cdf.h”

"gsl/gsl _interp.h”
"gsl/gsl spline.h"

The C-API is exposed (no better
or worse than calls in C)

"gsl/gsl _sf.h" Some calls can be a little verbose

Not hard for the user to wrap as
needed, to improve interfacing

var res : gsl st _result;
writeln(gsl_sf _erf(0.1));

var ret = gsl sf erf e(0.1, c _ptrTo(res));
writeln(res);
writeln(new string(gsl_strerror(ret)));

2 June 2016

CHIUW 2016

A rough edge : callbacks into Chapel

A specific use case : integrating a function

record Payload {
var alpha : real;

}

export proc func(x : real, p : c_void_ptr) : real {
var r = (p : c_ptr(Payload)).deref();
return log(r.alpha*x)/sqrt(x);

}

extern {

Hinclude <gsl/gsl integration.h>

double func(double,void*);
static void call_gags(void* params, double a, double b, double epsabs, double epsrel, size t limit,
gsl _integration_workspace* wk, double *result, double *err)

gsl function F;

F.function = &func;

F.params = params;

gsl_integration_gags(&F, a,b,epsabs,epsrel,limit,wk,result,err);

}

ar wk = gsl integration_workspace_alloc(10090);

ar result, error: real(64);

ar p = new Payload(1.0);

call_gags(c_ptrTo(p):c_void_ptr, @, 1, @, 1.e-07,1000,wk,c_ptrTo(result), c_ptrTo(error));

2 June 2016

CHIUW 2016

Chapel + MPI

- A large number of scientific/numerical packages are built off MPI
* Chapel needs to interop with these

2 June 2016

- Performance

« Currently (and anecdotally), single locale programs run slower in multi-locale
mode, even if minimal/no communication

- Big hit for otherwise trivially parallelizable jobs
- Use MPI to fix this

- Parallel programming idioms are often taught with MPI
« Use Chapel for convenience/productivity
MPI for performance

- MPI 1.1 (mostly) support upcoming
* Currently on master

- Wrapper mostly auto-generated by a simple Python script + Python-C parser
(pycparser :)
* Currently designed for Chapel in single-locale mode

©
—
o
N
=
=
s
@)

- Hopefully, can be extended to Chapel in multi-locale mode
* GASNet already allows for MPI interop

https://github.com/eliben/pycparser

Chapel + MPI : Hello, Chapel!

2 June 2016

use MPI;

use C_MPI;

The MPI module does the initialization; currently requires a
call to MPI_Finalize().

proc hello() {

writef("This is rank %i of %i processes saying Hello, Chapel!\n",worldRank, worldSize);

MPI_Barrier(MPI_COMM_WORLD);
}

©
—
o
N
=
=
s
@)

Chapel + MPI : Ring communication

proc ring() {

left = mod(worldRank-1, worldSize);
right = mod(worldRank+1, worldSize);
toleft : c_int = 1;
toright : c_int = 2;
fromleft = toright,
fromright = toleft;

buf : [1..2]int(32);
requests : [1..4]MPI_Request;
status : [1..4]MPI_Status;

MPI Irecv(buf[1], 1, MPI_INT, left, fromleft, MPI_COMM WORLD, requests[1]);
MPI_Irecv(buf[2], 1, MPI_INT, right, fromright, MPI_COMM_WORLD, requests[2]);

MPI Isend(worldRank, 1, MPI_INT, left, toleft, MPI_COMM WORLD, requests[3]);
MPI_Isend(worldRank, 1, MPI_INT, right, toright, MPI_COMM_WORLD, requests[4]);

MPI Waitall(4, requests, status);

writef("Rank %i recieved %i from the left, and %i from the right\n",worldRank,
MPI_Barrier(MPI_COMM WORLD);

buf[1], buf[2]);

2 June 2016

CHIUW 2016

Chapel + MPI : More complicated

proc test_newcomm() {

var comm : MPI_Comm,
ranksl : [@..1]c_int [0:c_int, 1:c_int],
ranks2 : [@..1]c_int [2:c_int, 3:c_int],
sum : c_int,
newrank : c_int,
origgrp, newgrp : MPI_Group;

MPI_Comm_group(MPI_COMM WORLD, origgrp);
if worldRank < 2 {
MPI Group_incl(origgrp, 2, ranksl[@], newgrp);
} else {
MPI Group_incl(origgrp, 2, ranks2[@], newgrp);
}
MPI_Comm_create(MPI_COMM_WORLD, newgrp, comm);
MPI_Allreduce(worldRank, sum, 1, MPI_INT, MPI_SUM, comm);

MPI_Comm_rank(comm, newrank);

writef("Rank = %i, new rank = %i, sum = %i\n",worldRank, newrank,
MPI_Barrier(MPI_COMM_WORLD);

2 June 2016

CHIUW 2016

Interactive Chapel?

2 June 2016

- The challenge 1s often not implementation, but what to implement...
- Trial and error

- Interactivity is a good thing
- Python/Mathematica/MatLab etc do this very well

- Jupyter notebooks are becoming very popular

- Chapel needs an interactivity story
* Cling : CERN’s implementation of a C++ REPL, based of Clang/LLLVM
* Doesn’t have to be pure Chapel

- Eg. a maintained Python interface (this is the mode in which I use Python —
interfacing into C, thanks to tools like Cython)

+ A Python interface could also ease people into Chapel
- Easy access to Python package ecosystem

©
—
o
N
=
=
s
@)

Tooling?

Debugging/profiling using standard tools hard, because of the C
translation

Tedious to track down performance issues

- I'd love to be able to quickly see where a program is spending most of its time
In a semi-automated manner (i.e. not print statements)

* Could be at a line/function level (for functions, need to handle inlining)

Compiler 1s slow; error messages one at a time

Rebuild the world from scratch each time around

Chapel 1dioms

« It’s easy to write Chapel code like C, harder to determine what better idioms
are.

- Flag what idioms are currently slow, and how to optimize when necessary

- Eg. When reduce works, when array accesses might be slow etc

« Maybe time for a Chapel Cookbook!

2 June 2016

©
—
o
N
=
=
s
@)

Some final thoughts

2 June 2016

- Chapel 1s fun to use...

- If I were the only person writing the code, I'd probably use Chapel a
significant portion of time...
- A year ago, that would not have been true
+ Missing interactivity, tooling...
+ Compiler speed

- The Chapel team has been wonderfully responsive -- thanks!

©
—
o
N
=
=
s
@)

