
CHAPEL-ON-HSA: TOWARDS SEAMLESS
ACCELERATION OF CHAPEL PROGRAMS USING HSA

ABHISEK PAN & MICHAEL CHU • MAY 27, 2016

2 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

OUTLINE

Exposing GPUs in Chapel – GPU sublocales

Reduction

Foralls

Future Plans

Heterogeneous System Architecture (HSA)

3 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

THE HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

 Enables efficient, portable management of heterogeneous systems

 Shared address space abstraction

‒ No explicit data movement

‒ Single pointer across all devices

 Fast user-mode task dispatch

‒ Shared memory queues for user-space direct packet enqueue

‒ Fast user-space synchronization

 Multi-device support: GPUs, DSPs, FPGAs, NICs, PIM, etc.

‒ A single task dispatch packet format across all devices

 Pre-emptive context-switching

 Open-source implementation

 Support for multiple higher-level languages

OPEN STANDARD PLATFORM SPECIFICATION

4 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

EXECUTING A GPU KERNEL

Host Application (C/C++)

Discover devices, create queues

Read & finalize kernel object
code

Create HSA packet (kernel
handle, argument ptrs)

Enqueue packet

Wait on completion signal

Device Kernel (OpenCL)

Compile to object
code

5 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

CHAPEL + HSA

 Native single-source GPU execution support

 Expose GPU execution capabilities in the language

‒ Expose GPU as a sublocale

‒ New “HSA” hierarchical locale with CPU and GPU sublocales

‒ Any operation executed on a GPU sublocale gets executed on a GPU

GPU OFFLOAD CAPABILITY FOR DATA-PARALLEL CONSTRUCTS

on Locales[0] do {
var A: [1..3] int = (1,2,3);
on (Locales[0]:LocaleModel).GPU do {

//Data-parallel constructs
var sum = + reduce A;

}
}

6 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

GPU EXECUTION IN CHAPEL

Runtime

Discover devices, create queues

Read & finalize kernel object
code

Create HSA packet (kernel
handle, argument ptrs)

Enqueue packet

Wait on completion signal

Compiler

Interface with runtime
to execute kernel

Generate OpenCL
code

Build System

Compile to object
code

7 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

COMPILER MODIFICATIONS
CODE GENERATION AND KERNEL EXECUTION

Parse

Create Task Functions

Parallel Transforms

Optimizations

C-Codegen

8 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

COMPILER MODIFICATIONS

Parse

Create Task Functions

Parallel Transforms

Optimizations

C-Codegen

• Insert new Chapel block for GPU offload
• Conditional execution of GPU code if sublocale is GPU

• Create new task functions for GPU blocks

Create GPU Functions
• Bundle core GPU executable in a new GPU function
• Maintain unique ids
• Capture arguments and bundle into 1 parameter

• Generate OpenCL code for GPU functions in .cl file
• Use runtime enqueue calls to enqueue functions using

ids

9 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

OFFLOADING NODE-LOCAL REDUCTIONS

 Predefined reduction operators to reduce aggregate expressions to a single result

 CPU reductions are pre-defined in the ChapelReduce module

 Similarly, we use precompiled OpenCL kernels

‒ Separate OpenCL kernel for every <operator, data-type> pair

 Parser replaces a reduction expression with a call to the Chapel runtime routine

 GPU reductions are tricky!

‒ Multiple calls to the kernels followed by processing on the CPU

‒ Runtime orchestrates execution of multiple kernels

‒ Direct translation of CPU code not appropriate

var A: [1..3] int = (1,2,3);
var sum = + reduce A;

10 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

REDUCTION RESULTS
A10-7850K WITH RADEON™ R7 SERIES (4 CPU CORES @3.7 GHZ, 512 GPU CORES@720MHZ)

0

2

4

6

8

10

12

14

16

18

256K 1M 4M 16M

Ti
m

e
in

 m
s

Data items

HSA Integer Reductions

GPU-Unoptimized CPU GPU-Optimized

11 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

OFFLOADING NODE-LOCAL FORALLS

var A: [1..256] int;
forall i in {1..256} do

A[i] = i;

Data-parallelism

var A: [1..256] int;
coforall j in {1..4} do {

const lo = 1+(i–1)*64;
const hi = lo + 63;
for i in {lo..hi}

A[i] = i;
}

CPU task-parallelism

4 tasks in parallel
Each task does 64 serial iterations

GPU thread-parallelism

256 work-items in parallel
4 workgroups

Each workgroup has 64 workitems

var A: [1..256] int;
size_t i = get_global_id(0)

A[i] = i;

12 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

OFFLOADING NODE-LOCAL FORALLS

 Bundle the loop body in a new GPU-targeted function

 Estimate work-items and work group size

 Replace loop variables with OpenCL calls to obtain thread id

 Insert OpenCL specific keywords(“kernel”, “global”)

 Emit kernel code in .cl file

 Build system compiles the kernels to a GPU ISA using a llvm-based tool-chain

 Kernel execution requests are sent to the runtime using the kernel-id

COMPILER

BUILD

RUNTIME

13 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

FUTURE WORK

 Multi-node reductions and coforalls

 Multi-dimensional arrays

 Expose workgroup based resources

‒ Local memory

‒ Barriers

 Benchmarking

 Testing

14 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

We Are Hiring!
Abhisek Pan Abhisek.Pan@amd.com

Mike Chu Mike.Chu@amd.com

Interns, Co-ops, Post-docs

(Fall 2016, Spring 2017,…)

Thank You!

mailto:Abhisek.Pan@amd.com
mailto:Mike.Chu@amd.com

15 | CHAPEL ON HSA | MAY 26, 2016 | CONFIDENTIAL

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the
right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2016 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for
informational purposes only and may be trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used by permission by Khronos.

