
Chapel With Polyhedral Transformation Using Autotuning

Tuowen Zhao(presenting), Mary Hall
School of Computing
University of Utah
Salt Lake City, UT

{ztuowen,mhall}@cs.utah.edu

Keywords-Chapel; polyhedral transformation; autotuning;
tiling; stencil

The Chapel language is designed to increase programmer
productivity in developing scalable parallel applications by
separating the specification of the computation from that of
how the data is mapped to a global, possibly distributed,
address space. The data mapping is specified using domain
maps, which can be implemented completely generally by
user specifications, invoke a library of standard mappings,
or rely on compiler code generation. Computations iterate
over domains, abstracting a set of points within a domain
map.

The simplest form of Chapel domains resemble sequential
loop iterations in standard C. Thus, we observe that for
a class of domains, those with affine loop bounds where
bounds are linear functions of loop index variables, the same
loop transformations available in polyhedral transformation
and code generation frameworks could be applied to Chapel
programs. Such frameworks represent and manipulate loop
iteration spaces to apply transformations; their strength is
the ability to compose transformations to apply a complex
sequence of transformations to a code. Prior work has
demonstrated the benefit of manually applying loop trans-
formations to Chapel programs[1][2]. To apply polyhedral
transformations, we use a polyhedral loop transformation
tool CHiLL[3]. It enables us to transform code for complex
loop nests in C. Locality and parallelization optimzations
available in CHiLL can be be used to reduce vertical
communication in programs by optimizing the utilization
of bandwidth though the memory hierarchy. In this talk, we
consider how to integrate CHiLL as a polyhedral framework
with the Chapel compiler implementation.

A general decision algorithm for which transformations to
apply and how to select optimization parameter values such
as tile size or loop unroll factors is difficult and dependent
on features of an architecture such as capacity of cache
and register file. Thus, many researchers employ autotuning
to derive the best set of optimizations and optimization
parameter values for a given application targeting a specific
architecture. In this talk, we combine polyhedral transfor-
mations with autotuning to explore a variety of optimization
strategies for a computation, which allows the compiler to
generate a search space of different optimization strategies

and evaluate these strategies using model-guided empirical
search [3]. Autotuning increases programmer productivity
through a systematic exploration of a large collection of
implementations that would be onerous for a programmer
to write.

Our initial experiment demonstrates a performance ben-
efits achievable when a collection of polyhedral transfor-
mations applied to Chapel domains (distribution and mul-
tiple levels of tiling) are combined with autotuning. Also,
we explored the possibilities of using CHiLL to generate
more complex computations for Chapel, especially stencil
computations.

This talk includes the following topics: (1) it describes
how to map Chapel domains to iteration spaces so that
polyhedral transformations can be composed to optimize
Chapel programs; (2) it demonstrates with a simple example
the benefits of applying such transformations in conjunction
with autotuning; and, (3) it describes and discusses how to
generate stencil computations using this method in Chapel.

REFERENCES

[1] I. J. Bertolacci, C. Olschanowsky, B. Harshbarger, B. L. Cham-
berlain, D. G. Wonnacott, and M. M. Strout, “Parameterized
diamond tiling for stencil computations with chapel parallel
iterators,” in Proceedings of the 29th ACM on International
Conference on Supercomputing, ser. ICS ’15. New York, NY,
USA: ACM, 2015, pp. 197–206.

[2] A. Sharma, D. Smith, J. Koehler, R. Barua, and M. Fergu-
son, “Affine loop optimization based on modulo unrolling in
chapel,” in Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models.
ACM, 2014, p. 13.

[3] C. Chen, J. Chame, and M. Hall, “Chill: A framework for
composing high-level loop transformations,” Citeseer, Tech.
Rep., 2008.


