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ABSTRACT
We extend an existing approach for efficient use of shared mapped
memory across Chapel and C++ for graph data stored as 1-D ar-
rays to sparse tensor data stored using a combination of 2-D and
1-D arrays. We describe the specific extensions that provide use
of shared mapped memory tensor data for a particular C++ tensor
decomposition tool called GentenMPI. We then demonstrate our
approach on several real-world datasets, providing timing results
that illustrate minimal overhead incurred using this approach. Fi-
nally, we provide a roadmap for extending our work to improve
memory usage and provide efficient random access to sparse shared
mapped memory tensor elements in Chapel, while still leveraging
high performance implementations of tensor algorithms in C++.
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1 INTRODUCTION
We present several challenges and successes of sharing sparse ten-
sor (i.e., multi-dimensional array) data, with no data duplication,
between Chapel [2] and a parallel program for computing sparse
tensor decompositions that is written in C++ and uses the Message
Passing Interface (MPI) [8] library to exchange data. Tensors are
the higher-order generalization of matrices, and low-rank tensor
decompositions (or factorizations) provide a useful tool for ana-
lyzing latent relationships in tensor data [5]. We focus here on
computing low-rank canonical polyadic (CP) decompositions, for
which several high-performance C++ implementations have been
developed over the past decade [3, 9, 11, 12].

While Chapel is portable and easy to use, we believe there is great
benefit in leveraging existing high performance C++ libraries and
applications from within a Chapel program. One way to share data
between Chapel programs and C++ applications is to write data
to a file in Chapel, read the file into the C++ application, perform
some computations, write the results to file in the C++ application,
and then read the file into Chapel. This incurs significant overhead
which increases with the size of the data, in terms of file I/O and of
loading a copy of the file into memory via the C++ application.
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Previous work demonstrated sharing 1-D data between a Chapel
program and a C++/MPI program, without writing the data to
an intermediate file [7]. The approach in that work effectively
maintained data layout and locality, memory usage efficiency, and
data-parallel computation capability. Here, we present extensions
of the previous 1-D work to multiple dimensions.

2 BACKGROUND
Previous work enabled Chapel/C++ distributed-memory interoper-
ability for graph algorithms whose graphs are represented using
multiple 1-D arrays (edge lists and optional weights). McCrary et
al. demonstrated that it is possible to share data between Chapel
programs and a C++/MPI graph analysis application, Grafiki, with-
out duplicating the data on disk or in memory [7]. They extended
the Chapel BlockDist distribution to use shared mapped memory,
via the low-level shm_open and mmap Linux functions, to enable
read/write access to distributed Chapel arrays by Grafiki MPI ranks.
Two one-dimensional (1-D) Chapel arrays store the pairs of vertices
associated with each edge in the graph. These arrays use the same
Chapel domain constructed with the extended BlockDist distribu-
tion, hence automatically distributing the shared mapped memory
arrays across the available Chapel locales (and, thus, corresponding
MPI ranks). Once the arrays are created and populated, the Chapel
program writes a small metadata file including references to the
shared mapped memory arrays. The Chapel program then signals
Grafiki using a flag passed via shared mapped memory that the
arrays are ready for use in Grafiki. The metadata file containing the
shared mapped memory references is read from a single process
on the MPI rank-0 node and distributed to the other nodes. Each
MPI rank opens its respective shared mapped memory array refer-
ence and wraps the corresponding memory in a Kokkos::View [4],
which is the array abstraction format used by Grafiki. Grafiki then
performs the distributed graph analysis computations and signals
Chapel via the shared mapped memory flag that the operation is
finished. The Chapel program can then perform further operations
on the graph and/or the results of the Grafiki computation.

3 METHODOLOGY
The goal of this work is to extend the existing Chapel/C++ distributed-
memory interoperability for sharing 1-D arrays between Chapel
and C++/MPI programs to algorithms and programs that use sparse
𝑑-D tensors. We focus here on specific cases where 𝑑 ∈ {3, 4, 5},
but our work covers the general case of 𝑑 ≥ 1.

GentenMPI stores sparse tensors in a coordinate, or COO, format
that extends the standard Matrix Market format [1] used for sparse
matrices. The GentenMPI COO format stores non-zero sparse tensor
elements using a 2-D array for the coordinates (i.e., indices) and
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a 1-D array for the values. That is, for a 𝑑-dimensional sparse
tensor with nnz non-zero elements, the coordinates are stored in
a 2-D array of size 𝑑 × nnz, and the values are stored in a 1-D
array of size nnz. The BlockDist distribution allows 1-D and 2-D
arrays, but the semantics of the 2-D coordinates array requires
re-shaping the Chapel Locales array for proper distribution of the
coordinates. The semantics of the 𝑑 × nnz 2-D coordinates array
are such that the first dimension of the array—corresponding to
the coordinates—should be considered indivisible, because all 𝑑
coordinates for a given non-zero element should be distributed
together. That is, if there is a non-zero element with coordinates
(𝑖, 𝑗, 𝑘), it should not be the case that coordinates 𝑖 and 𝑗 belong to
locale 𝐴 while coordinate 𝑘 belongs to locale 𝐵, when 𝐵 ≠ 𝐴. The
default behavior of BlockDist is to partition a 2-D array uniformly
across both dimensions, and to distribute the partitions across the
number of locales (numLocales). Such behavior breaks the semantic
indivisibility of the first dimension of the coordinates array. But
by reshaping the Locales array into a 2-D, 1 × numLocales array,
this leads to BlockDist partitioning the second dimension of the
coordinates array—corresponding to the non-zero elements—as
desired.

GentenMPI also imposes further constraints on the partitioning
of the sparse tensor. Specifically, each Chapel array partition must
only contain elements belonging to a non-overlapping bounding
box (sub-tensor) within the coordinate space of the sparse tensor.
For example, suppose a 3-D sparse tensor with dimensions 8 ×
6 × 7 using 1-based coordinates comprises two bounding boxes 𝐴
and 𝐵, where 𝐴 contains elements whose coordinates range from
(1, 1, 1) to (4, 3, 3) and 𝐵 contains elements whose coordinates
range from (5, 4, 4) to (8, 6, 7). This scenario would require sparse
tensor elements associated with 𝐴 to be stored together on one
Chapel locale, and would require the same for elements associated
with 𝐵. GentenMPI requires the use of non-overlapping bounding
boxes to minimize expensive inter-processor communication, thus
maximizing overall computational performance. This constraint
poses an issue for partitioning the coordinates array in Chapel,
because the coordinates stored in the array determine how the
array should be partitioned, but Chapel partitions uniformly based
on the dimensions of the 2-D coordinates array (i.e., 𝑑 × nnz), not
the dimensions of the sparse tensor (e.g., 8×6×7, as in the example
above). We address this constraint by performing a sparse tensor file
analysis for determining partitioning information (a one-time cost),
then setting the size of the coordinates array such that Chapel’s
uniform partitioning is compatible with the GentenMPI bounding
box constraint.

4 EXPERIMENTS
We demonstrate the use of our method for sparse tensor interop-
erability between Chapel and C++/MPI using several real-world
sparse tensor datasets from the FROSTT [10] tensor benchmark
data repository. Table 1 shows the details of the three tensor datasets
used in the experiments presented here.

We use GentenMPI’s implementation of GCP-ADAM [6] for
computing the low-rank CP tensor decompositions, which is well
suited for the FROSTT data, as it can compute decompositions on
sparse count tensor data. We use GentenMPI’s partitioning scheme,

Table 1: Datasets from the FROSTT tensor benchmark repos-
itory [10] used in experiments.

Sparse Tensor Tensor Dimensions nnz

chicago-crime-comm 6.2𝐾 × 24 × 77 × 32 5.3 M
lbnl-network 1.6𝐾 × 4.2𝐾 × 1.6𝐾 × 4.2𝐾 × 868𝐾 1.7 M
nell-2 12𝐾 × 9𝐾 × 29𝐾 77 M

provided by the SPLATT tensor package [11], for computing the
one-time cost of identifying non-overlapping bounding boxes as a
function of the dataset and number of Chapel locales/MPI ranks.
We vary the number of locales/ranks (4, 8, 16, 32, 64) used in the
experiments to illustrate the performance characteristics over a
range of computational resources. In each experiment, we run 5
iterations of the GCP-ADAM algorithm to compute an approximate
rank-16 CP decomposition. We repeated each experiment five times,
and recorded the mean and standard deviation for the runtime. All
experiments were run using Chapel 1.24 on a Cray XC40 system,
using up to 64 (of the 100 available) compute nodes, where each
node has 32 cores 128GB memory.

Note that we do not report timing results for file I/O at this time,
as the methods in Chapel and GentenMPI are very different and
thus not comparable. Instead, we focus on just the timing of the
computations associated with shared mapped memory setup and
computation across Chapel and C++/MPI versus C++/MPI alone.

Table 2 presents timing results of these experiments. Column 3
(Chapel→ C++ shm_open/mmap) shows the time taken in allocating
the shared mapped memory in Chapel and signaling GentenMPI to
start. As shown, these times are quite small and appear to scale as
the logarithm of the node count. Column 4 (Chapel → C++ Gen-
tenMPI call) shows the time taken to initialize the shared mapped
memory in GentenMPI. These times are similarly small, except
for an unusual outlier with chicago-crime-comm on 16 nodes—
experiments are underway to determine why the GentenMPI call
timing for this configuration is longer than for the others. Finally,
Columns 5 and 6 show the times for running GCP-ADAM using our
Chapel→ C++ interoperability and in C++ only (i.e., GentenMPI
as a standalone program), respectively. These times are very simi-
lar to each other, suggesting non-significant amounts of overhead
for our shared mapped memory approach. From a computational
performance perspective, these are promising results.

5 FUTURE DIRECTIONS
There are several research opportunities moving forward, including
improved memory efficiency and general access to sparse tensor
elements and operations from Chapel.

Our current approach suffers from three challenges associated
with memory efficiency:

(1) Chapel’s BlockDist distribution partitions arrays uniformly,
so the coordinates and values arrays are distributed in asymp-
totically equal portions across the locales.

(2) Sparse tensors generally exhibit irregular non-zero element
patterns, which means that uniform bounding boxes for a
sparse tensor generally will not contain equal portions of
non-zero elements.
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Table 2: Timing results of Chapel and C++/MPI interoperability for computing low-rank sparse tensor decompositions over a
range of number of Chapel locales/MPI ranks. Each column shows the mean (with standard deviations) for the runtime over
five repeated experiments in the given configuration.

Sparse tensor Nodes Chapel → C++ Chapel → C++ GCP-ADAM GCP-ADAM
shm_open/mmap GentenMPI call Chapel→ C++ C++ only
time (s) (Stdev) time (s) (Stdev) time (s) (Stdev) time (s) (Stdev)

chicago-crime-comm 4 1.50e-03 (2e-05) 5.76e-03 (2e-03) 7.36e+00 (4e-02) 7.20e+00 (3e-02)
chicago-crime-comm 8 2.63e-03 (8e-04) 5.06e-03 (5e-04) 5.99e+00 (4e-02) 5.86e+00 (5e-02)
chicago-crime-comm 16 3.06e-03 (9e-05) 1.74e-01 (2e-01) 6.74e+00 (2e-02) 6.62e+00 (3e-02)
chicago-crime-comm 32 4.41e-03 (3e-05) 6.70e-03 (6e-04) 9.39e+00 (6e-02) 9.41e+00 (3e-02)
chicago-crime-comm 64 5.49e-03 (5e-05) 1.04e-02 (4e-04) 1.23e+01 (2e-02) 1.22e+01 (5e-02)

lbnl-network 4 1.76e-03 (5e-04) 5.43e-03 (9e-04) 1.04e+03 (2e+01) 1.07e+03 (9e+00)
lbnl-network 8 2.17e-03 (3e-04) 4.48e-03 (4e-04) 5.21e+02 (5e+00) 5.26e+02 (8e-01)
lbnl-network 16 3.06e-03 (1e-04) 1.02e-02 (8e-03) 2.67e+02 (4e+00) 2.69e+02 (6e-01)
lbnl-network 32 4.41e-03 (7e-05) 6.36e-03 (3e-04) 1.31e+02 (1e+00) 1.31e+02 (6e-01)
lbnl-network 64 5.51e-03 (2e-05) 1.31e-02 (5e-03) 8.74e+01 (2e-01) 8.71e+01 (5e-01)

nell-2 4 1.49e-03 (7e-06) 8.05e-03 (6e-04) 5.06e+01 (2e-01) 4.99e+01 (2e-01)
nell-2 8 2.04e-03 (2e-05) 1.30e-02 (8e-03) 3.22e+01 (9e-02) 3.20e+01 (1e-01)
nell-2 16 2.91e-03 (4e-05) 8.83e-03 (9e-04) 2.03e+01 (1e-01) 2.03e+01 (4e-02)
nell-2 32 4.38e-03 (6e-05) 9.76e-03 (2e-03) 1.49e+01 (2e-01) 1.49e+01 (3e-02)
nell-2 64 5.49e-03 (3e-05) 1.17e-02 (2e-03) 1.19e+01 (2e-01) 1.21e+01 (2e-01)

(3) The COO sparse tensor format (as used by sparse tensor
decomposition libraries like GentenMPI) stores non-zero
elements in dense arrays which will be uniformly partitioned
by BlockDist based on their dense dimensions (i.e., 𝑑 ×nnz).

These three conditions lead to a situation where we must pad
the dense arrays in order to guarantee that each locale has enough
storage for its (generally irregularly large) number of bounding
box non-zero elements. This padding clearly leads to inefficient
use of memory. In extreme cases, even for the datasets used in our
experiments here with poorly chosen bounding boxes, we could
have some bounding boxes containing𝑂 (1) −𝑂 (10) elements while
others containing as much as 𝑂 (107) elements, leading to mem-
ory allocations of 𝑂 (107) across all locales. Hence, improving the
memory efficiency is a clear first research opportunity.

A second research opportunity regards the COO format itself,
which does not allow for efficient random access to sparse ten-
sor values. This is because the coordinates of non-zero elements
are stored (in any order), and thus access would require a search
over the entire coordinates array. Chapel provides a sparse domain
construct based on the COO format, which allows creating sparse
arrays indexed by multi-dimensional coordinates. An array based
on a Chapel sparse domain can be used with the shared memory
mapped BlockDist, hence allowing random access to sparse tensor
values. But in this case, the array’s values are the sparse tensor’s
values (and not their coordinates), meaning that the shared mapped
memory BlockDist distribution would only provide access to the
values and not their coordinates. Thus, in the interoperability use
case presented above, GentenMPI could access the sparse tensor
values but not know where they reside in the sparse tensor.

Our proposed solution is to extend Chapel’s sparse domain and
array facilities while aligning with GentenMPI’s specific layout

requirements. Chapel’s sparse domain stores coordinates in a COO-
style format, meaning that the coordinates are stored in an array
internal to the sparse domain data structure. We plan to refactor
this internal coordinates array to use shared mapped memory as in
the BlockDist distribution described above, while maintaining all
Chapel functionality of the sparse domain and of the arrays which
use the domain.

Our plan for extending the Chapel/C++ interoperability for
sparse tensors presented above to Chapel sparse domains includes
the following steps:

(1) Allow the Chapel sparse domain’s coordinates array to be
stored in shared mapped memory. Currently, sparse domain
coordinates are stored internally, initially in a size zero array,
to which sparse coordinates may be added.

(2) Store the Chapel sparse domain’s coordinates array elements
using a memory layout compatible with GentenMPI. That
is, our modified GentenMPI implementation wraps shared
mapped memory arrays in Kokkos::Views, which is possi-
ble only for arrays whose elements have a fixed separation
(stride) between them in memory.

(3) Partition the Chapel sparse domain (using BlockDist or
similar) so that the partitions satisfy bounding box require-
ments for GentenMPI. This would be the expected behavior
for BlockDist on a Chapel sparse domain.

(4) Store the Chapel sparse domain coordinates on the same
locale as their corresponding values. This is yet to be deter-
mined.

(5) Store the Chapel sparse domain coordinates without dupli-
cating them across locales. This is yet to be determined.

In this talk, we will present the details of our initial Chapel
and C++/MPI interoperability for sparse tensor decompositions
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described above along with the progress to date on completing the
sparse domain steps listed above.
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