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Abstract: A research gap in calibrating distributed watershed hydrologic models lies in the development of 

calibration frameworks adaptable to increasing complexity of hydrologic models. Parallel computing is a promising 
approach to address this gap. However, parallel calibration approaches should be fault-tolerant, portable, and easy 
to implement with minimum communication overhead for fast knowledge sharing between parallel nodes. 
Accordingly, we developed a knowledge-sharing parallel calibration approach using Chapel programming language, 
with which we implemented the Parallel Dynamically Dimensioned Search (DDS) algorithm by adopting multiple 
perturbation factors and parallel dynamic searching strategies to keep a balance between exploration and 
exploitation of the search space. Our results showed that this approach achieved super-linear speedup and parallel 
efficiency above 75%. In addition, our approach has a low communication overhead, along with the positive impact 
of knowledge-sharing in the convergence behavior of the parallel DDS algorithm . 

Due to the extensive spatiotemporal heterogeneity of predominant hydrological processes, distributed 
watershed hydrologic models require numerous model parameters and input datasets (Singh and Frevert, 2003; 
Khakbaz et al., 2012; Refsgaard, 1997). One distributed model simulation accounts for the most time-consuming 
single computation in watershed modelling, with a runtime varying from minutes to days (Zhang et al., 2009; Razavi 
et al., 2010). Subsequently, applying global (meta)heuristic optimization algorithms imposes high computational 
requirements on calibrating these hydrologic models (Xu et al. 2013). The calibration requires an abundant number 
of model simulations for thorough exploration and exploitation of their hyper-dimensional parameter search space. 
This substantial computational burden can also get exacerbated by using high-resolution datasets and/or working 
on larger watersheds (Budamala and Mahindrakar, 2021). Thus, not only the calibration of distributed watershed 
hydrologic models is a computationally expensive process, but also its complexity and size can potentially grow. 

Parallel computing is the simultaneous execution of independent and parallelizable components of a large 
computing application. This approach is promising to provide speedup (the ratio of execution times of a parallel 
application to its sequential version) and scalability (the ratio of actual speedup to the ideal speedup with a certain 
number of processors) for watershed hydrologic model calibration with any size or complexity (Asgari et al., 2022; 
Quinn, 1994). Sub-model and model level parallelization are two popular parallelization strategies. At the sub-model 
level, parallelization takes place for the sub-units of a hydrologic model to speed up a single-model simulation. 
However, it comes with challenges of model reconstruction and complexities associated with parallel task 
management for component communications (Lin and Zhang, 2021). The model level parallelization is to parallelize 
integrated model simulations to speed up the entire model calibration process, which has shown much ease in 
achieving parallel computing objectives. For instance, Xia et al. (2021) developed Parallel Optimization with Dynamic 
Coordinate Search using Surrogates (PODS) to not only decrease the number of model simulations but also increase 
the calibration speed. The implemented parallelization strategy was at the model level, and the authors reported 
speedy automatic calibration in their study. Open Multi-Processing (OpenMP) (Huo et al., 2018; Kan et al., 2018; Kan 
et al., 2020; Kan et al., 2016) and Message Passing Interface (MPI) (Li et al., 2015; Vrugt et al., 2006; Kim and Ryu, 
2019) are two popular parallelization paradigms for model level parallelization strategy in the calibration of 
watershed hydrologic models. However, the current research gap in the parallel calibration of hydrologic models 
challenges the applicability of these paradigms. 

Population-based metaheuristic algorithms, such as Artificial Bee Colony (ABC) (Huo et al., 2018), Bayesian 
optimization (BO) (Ma et al., 2022), shuffled complex evolution (SCE-UA) (Kan et al., 2018), particle swarm algorithm 
(PSO) (Ma et al., 2021; Niu et al., 2021), and Genetic Algorithm (Zhang et al., 2016) have been extensively 
implemented in parallel calibration of hydrologic models. Contrary to single-solution algorithms, these algorithms 
search the parameter space with multiple initial/evolved solutions. This behavior empowers population-based 
metaheuristic algorithms to investigate different zones simultaneously and eliminate the bias in the initial solution 
or sampling strategy(Prügel-Bennett, 2010). Hence, they are inherently parallelizable as the initial population can be 
split into subpopulations to get evolved independently on parallel computing units. However, algorithms such as 
ABC and PSO are swarm-based algorithms; the evaluation of the population in these algorithms has a cooperation 
phase in which individuals transfer the information they have gained to lead each other to the global optimum (Ab 
Wahab et al., 2015; Beheshti and Shamsuddin, 2013). Although splitting the populations into subpopulations 



increases the diversity and lowers the possibility of getting trapped in a local optimum, it eliminates the cooperation 
phase and impacts the convergence speed. In addition, Hadka and Reed (2015) showed that running distinct 
simulations with independent populations on each parallel node decreased the communication cost. However, the 
periodic migration events, in which the most optimum populations from parallel nodes were exchanged, led to 
producing the highest-quality results. Thus, not only the cooperation phase should be preserved in parallel 
population-based optimization algorithms, but also it is beneficial to provide it for parallel single-solution 
optimization algorithms. The reason is that single-solution optimization algorithms are not equipped with strategies 
of avoidance of local optimum by appropriate cluster-wide node coordination and broader exploration (Majeed and 
Rao, 2017). Hence, knowledge-sharing becomes vital for both parallel single-solution and population-based 
optimization algorithms for adaptive and purposeful parallel exploitation and exploration of parameter search 
space.  

Knowledge-sharing comes with two conditions: asynchronicity and low communication overhead. Zamani et al. 
(2021) parallelized Dynamically the Dimensioned Search (DDS) algorithm for parallel calibration of the SWAT model. 
They provided knowledge sharing to some degree for the algorithm but in a synchronous architecture. Their results 
showed negative impacts of knowledge sharing on parallel efficiency in parallel calibration of hydrologic models. 
This degradation of parallel efficiency, defined as the speedup gain relative to the scale of the parallel system (Asgari 
et al., 2022), was due to different configurations of computing units, such as various disk access times for 
reading/writing databases and potential failures throughout simulations on each node in a synchronous 
architecture. Besides, communication overhead in knowledge-sharing parallel systems should be minimized to 
ensure that adding the knowledge-sharing feature does not impact the overall parallel efficiency of these systems. 
Considering these two conditions, OpenMP and MPI parallelization paradigms are evaluated further.  

OpenMP adopts Fork/Join (FJ) parallelism framework for shared-memory parallelization. In the FJ framework, 
task decomposition, parallel computation, and result combination are carried out repeatedly, which is suitable for 
applications that can be broken down recursively into several subproblems (Peng et al., 2017). This framework is 
more appropriate for fine-grained parallelization to avoid long latencies (the time-elapse between requesting a 
memory space and receiving a response (Silc et al., 1998)) in the result combination step derived from unequal 
processing speeds of parallel computing units. Synchronization in the FJ framework exists in the result combination, 
where all computing units must finish processing their assigned subproblems before proceeding with further 
unprocessed ones. By implementing fine-grained parallelization, which focuses on decomposing sequential 
problems to the maximum number of small and fast-to-finish parallelizable components, latencies in the result 
combination of FJ can be minimized (Corbellini et al., 2018; Lea, 2000). Another limitation of the OpenMP paradigm 
lies in its incapability of supplying horizontal scaling. Horizontal scaling is the capability of increasing involved 
computing units in the execution of the parallel application for more complex problems. In OpenMP-based systems, 
the number of computing units and the size of the shared memory bound the horizontal scaling (Kirk and Wen-Mei, 
2016). In fact, long latencies in accessing the shared memory in these systems degrade theoretical parallel 
performance and consequently limit scalability. 

The limitation of OpenMP-based systems paved the way for using the MPI parallelization technique to develop 
distributed-memory parallel systems for calibrating hydrologic models (Bomhof et al., 2019). In MPI-based systems, 
data transfer among parallel tasks are explicitly managed by sending/receiving messages. These explicit send-and-
receive messages, which are I/O requests, ultimately lead to saturated I/O activities, long latencies due to multiple 
disk accesses, and parallel computing performance degradation (Ou et al., 2006). Another associated problem with 
the MPI parallelization technique is its low parallel productivity (Niu et al., 2021), which calls for more studies on 
parallel systems that can be easy-to-implement. Parallel productivity defines as the ability to develop High-
Performance Computing (HPC) systems that are easier to program, which reduces software development cost and 
time; however, this ease should not decrease the overall system's parallel performance (Tolson and Shoemaker, 
2007). Studies have referred to the low parallel productivity of MPI-based systems by mentioning the tight coupling 
between hydrologic models and these systems, which requires model reconstruction (Lin and Zhang, 2021; Zhang et 
al., 2021). Her et al. (2015) pointed out that significant modifications of sequential optimization algorithms and/or 
hydrologic model source codes were expected in developing MPI-based parallel calibration systems. Niu et al. (2021) 
encouraged hydrologists to adopt parallel computing in calibration of hydrologic models, which led to increased use 
of distributed hydrologic models and their enhancement. However, implementation of parallel systems should be 
relatively easy, with minimum requirements for pre-installation frameworks/libraries/packages.  



The challenges in MPI-based systems along with their limitations in handling parallel task/node failures 
motivated researchers to implement Hadoop-based systems (Lin and Zhang, 2021; Zhang et al., 2021; Ma et al., 
2022). However, several studies reported that the shared-memory of Hadoop-based systems and the I/O operations 
for node communications along with simultaneous disk access in computing units resulted in high I/O overheads and 
long latencies in these systems (Zamani et al., 2021; Ma et al., 2022; Zhang et al., 2021, Zhang et al., 2016). Lin and 
Zhang (2021) and Ma et al. (2021) pointed out that the Spark computing framework can reduce disk I/O overhead in 
Hadoop. These studies showed that increasing parallel tasks decreased the parallel efficiency in transferring big data 
blocks due to the distribution and operation of tasks in Spark (Ma et al., 2021). Similarly, due to Spark task 
management and data transfer, Spark might not be suitable for calibrating lightweight hydrological models with 
intensive communications (Lin and Zhang, 2021). Therefore, there is a research gap in developing fault-tolerant, 
portable, and easy-to-implement knowledge-sharing-based parallel calibration algorithms that require minimum 
communication overhead. 

 A new generation of parallel computing models called Partitioned Global Address Space (PGAS) has emerged to 
improve parallel productivity and performance. Unlike OpenMP-based systems, where only global memory is 
available, and  MPI-based systems, where parallel computing units access merely local memory, each computing unit 
in the PGAS model has its local memory while part of it is shared with other computing units (global memory). In the 
PGAS model, computing nodes can read/write not only their local memories but also the remote/shared memory of 
each computing node, synchronously or asynchronously (De Wael et al., 2015; Dinan et al., 2010). Pang et al. (2022) 
showed that the asynchronous hydrologic model calibration has a 40%~70% improvement in computational time 
compared to the synchronous version. Parallel calibration of hydrologic models has an asynchronous nature due to 
different configurations of computing units, such as various disk access times for reading/writing databases and 
potential failures throughout simulations on each node. Hence, in nodal communications, only one side is aware of 
the communication event, which is called one-sided communication. This communication is a type of network 
communication in which one computing unit is responsible for identifying the sender/receiver of the 
data/knowledge and the size of data/knowledge. The other computing unit in network communication is only either 
the sender or receiver of data/knowledge. This communication is indispensable for asynchronous communication 
(Nishtala et al., 2011). Since the MPI parallelization paradigm requires matching send and receive messages to allow 
data transfer, which is called two-sided communication, it is inconvenient for knowledge-sharing parallel calibration 
of hydrologic models. On the other hand, PGAS languages are attractive for the parallel calibration of hydrologic 
models as they support one-sided communication. Chapel is a parallel programming language based on the PGAS 
model, which supports the implementation of productive and general-purpose HPC systems through its high-level 
abstractions for data and task parallelism. Gmys et al. (2020) studied high-performance programming languages 
(Chapel, Julia, and Python) for developing parallel metaheuristic optimization algorithms by considering C/OpenMP 
as the reference for their study. They concluded that Chapel was the only programming language with a higher level 
of parallel productivity than C/OpenMP in programming the metaheuristic optimization algorithms. The authors 
showed that Chapel had the smallest gap between serial and parallel relative performance, which proves its high 
scalability. Besides, Julia and Python do not have mature multi-threading support for programming parallel 
metaheuristics as Chapel does.  
In this study, we proposed a knowledge-sharing parallel calibration approach as a general parallel framework for 

calibrating distributed hydrologic models using the Chapel programming language. Our parallelization approach 

stands out from all previously designed/implemented approaches/frameworks due to its unique features: 1) parallel 

Dynamically Dimensioned Search (DDS) algorithm with different-size perturbation and divided perturbation zones, 

2) advanced database management, 3) asynchronous multithreading feature for fast and reliable knowledge-

sharing, and 4) parallel node failure handling capability by addressing chapel's Q-threads tasking layer challenge for 

running hydrologic models. We implemented our proposed parallel calibration approach to calibrate the Integrated 

Modelling for the Watershed Evaluation of BMPs (IMWEBs) fully distributed hydrologic model (Liu et al., 2018) for 

the Catfish Creek watershed of Ontario in Canada. We evaluated the capability of our proposed approach in 

providing reliable model calibration results (model performance) along with parallel speed up and parallel efficiency. 

Our proposed approach achieved super-linear speedup and parallel efficiency above 75%. In addition, we proved 

that our approach has a low communication overheard along with the positive impact of knowledge-sharing in the 

convergence behaviour of the parallel DDS algorithm. 
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