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ABSTRACT
This paper will demonstrate how the parallelism and expressive-
ness of the Chapel programming language are used to achieve
an enormous improvement in computational speed for a prob-
lem related to coral reef conservation. Chapel’s concise syntax
and versatile data structures enable this problem to be solved
in under 300 lines of code, while reducing the time to solution
from days down to the order of seconds. This improvement is
so substantial that it represents a paradigm shift in the way
biodiversity can be measured at scale, providing a wealth of
novel information for marine ecosystem managers and opening
up brand new avenues for scientific inquiry. This paper will
review the solution strategy and data structures in Chapel that
allowed these improvements to be realized, and will preview
future extensions of this work that have been made possible by
this drastic speedup.

CCS CONCEPTS
• Applied computing→ Environmental sciences; • Com-
puting methodologies→ Parallel programming languages.

KEYWORDS
Chapel, coral reef, habitat heterogeneity, Rao’s Q, ecosystem

1 INTRODUCTION
Coral reef ecosystems are in rapid decline worldwide, and their
biodiversity loss is negatively impacting their ecological func-
tion, sustainability, and provision of ecosystem services. Ef-
forts are increasingly being made to protect the remaining reefs
through the creation of marine protected areas (MPAs), which
are often placed to maximize species richness in a given area.
Developing effective strategies for locating and managing MPAs
remains challenging, however, due to the tendency for coral
reefs to be both sparse and widely distributed, and because it is
often very difficult and expensive to measure species diversity
in situ. Such measurements are also subject to nuanced technical
questions pertaining to sampling design, what constitutes a suffi-
cient number of samples, and sometimes ambiguous definitions
about how to define a species community [3].

These issues motivate the search for ways to assess species
diversity using remote sensing. Remote sensing is the standout
technology for mapping the Earth at scale and is increasingly
being leveraged for assessing biodiversity of tropical coral reefs
[5, 21, 32], taking advantage of its relatively cheap and repeatable
sampling, essentially global spatial coverage, and extremely high
resolution [e.g. 9, 20]. Remotely-sensed images are used to assess
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environmental heterogeneity as a proxy for biological diversity
under the “habitat heterogeneity hypothesis” [15, 19], which
postulates that areas of high environmental heterogeneity (i.e.
habitat type) contain a larger number of ecological niches for
species to fill [6, 18, 27]. Though there are inherent uncertainties
associated with extrapolating biodiversity from habitat type, and
habitat type from visible-spectrum imagery [e.g. 10], this overall
approach has been successfully used to assess biodiversity across
multiple reef sites [4, 11, 13, 14, 33].

Several metrics exist that attempt to quantify biodiversity
[23]. A metric known as beta diversity is often employed be-
cause it measures the variability in species composition and
population within a given area. However, it is not possible to
quantify the different species in a particular area without tak-
ing in situ measurements, making beta diversity unsuitable for
remote sensing measurements. An alternative approach is to
measuring the variability in habitat types rather than species
composition, resulting in a metric known as habitat heterogene-
ity. Larger values indicate frequent transitions between multiple
habitats [e.g. 8], a condition that is well-correlated with species
richness [e.g. 31]. Hence, measuring habitat heterogeneity us-
ing habitat data fits naturally with the hypothesis that habitat
diversity is correlated with species diversity [e.g. 8, 17], and
motivates using this approach for assessing potential MPA sites.
Fortunately, coral reefs are very well-suited for measuring habi-
tat heterogeneity using habitat maps, since they typically feature
clear and shallow waters permitting high light penetration and
differentiation of habitat types [7].

The Chapel program described in this paper calculates habitat
heterogeneity using habitat maps derived from the Allen Coral
Atlas (hereafter ACA), a global map and monitoring tool for the
world’s shallow coral reefs at < 5meter pixel resolution. The mo-
tivation for this program stems from multiple ongoing studies
that had previously calculated habitat heterogeneity using a se-
rial MATLAB program. The previous program was encumbered
by the extremely high resolution of the Atlas, which created
a massive computational challenge that limited these calcula-
tions to areas of 𝑂 (10 km). Because the habitat heterogeneity
algorithm is highly parallelizable, Chapel offered an alternative
solution for exploiting the potential parallelism and speeding
up these calculations drastically.

The layout of this paper is as follows. Section 2 provides an
overview of the mathematics underpinning the habitat hetero-
geneity calculation, which is a variant of the well-known Rao’s
Quadratic Entropy technique [2, 24, 28, hereafter Rao’s Q]. Sec-
tion 3 will discuss the Chapel program and solution strategy,
including the approaches for preprocessing the input images and
limiting the memory burden through distributed I/O. Section 4
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will show results and performance metrics. Concluding remarks
appear in Section 5.

2 OVERVIEW OF THE RAO’S Q FORMULA
The program discussed in this paper, hereafter referred to as
“RapidQ”, is a highly parallelized solver for calculating Rao’s Q
for each pixel of an input image. Its primary application thus
far has been for calculating habitat diversity for shallow aquatic
environments, though its use could readily be extended to other
ecological settings as well.

Rao’s Q is defined as the expected dissimilarity between two
samples selected randomly with replacement, and is expressed
mathematically as

𝑄 =
∑︁
𝑖

∑︁
𝑗

𝐷𝑖 𝑗𝑃𝑖𝑃 𝑗 . (1)

The indices 𝑖 and 𝑗 represent the different sample types in the
image, such that the summations are taken over all possible types.
𝐷𝑖 𝑗 is the dissimilarity between samples 𝑖 and 𝑗 , and 𝑃𝑖 is the
probability that sample 𝑖 is drawn. The dissimilarity coefficients
can be based on a variety of measures depending on whether
Rao’s Q is being applied to species, habitats, or otherwise [e.g.
16, 30]. Rao’s Q is often favored because of its dependence on
both the degree of dissimilarity between samples (𝐷𝑖 𝑗 ) and their
relative abundances (𝑃 ), making it more well-aligned with a
modern notion of biological diversity than other measures [26].

3 CHAPEL IMPLEMENTATION
3.1 Preprocessing the inputs
The recent release of global coral reef maps with sub-decameter
spatial resolution [1, 22, 29] allows the habitat heterogeneity
hypothesis to be tested at scale. One such map is the ACA, which
contains both benthic and geomorphic map layers at 5 m pixel
resolution using PlanetScope imagery [1]. The ACA largely au-
tomates its map productions by first applying a random forest
classifier to identify the benthos and geomorphology, and then
refines those classifications with object-based analysis. The ACA
benthic habitat composition maps are mapped to approximately
10 m depth and use six classes, while the geomorphic compo-
sition maps are mapped to 15 m depth and use 12 classes [12].
All ACA map products are available to download on their data
portal.

Some preprocessing must be done to extract the ACA maps
in a usable format for most geographic information system (GIS)
software. On the ACA portal, the user can specify an area of
interest and request the underlying benthic and geomorphic
maps to be sent to their email in a GeoJSON format. These files
can be easily read into QGIS, or converted to a more widely used
shapefile format. Once the desired area is loaded as a vector
feature, it is then converted from a geographic to a projected
coordinate system. A raster image is then created with pixels
at 5 m resolution (mirroring the resolution of the original data),
with specific values assigned to each habitat classification. Land
polygons as used in ACA processing are downloaded from Open-
StreetMap, converted to a raster at the same resolution as the
habitat maps, and then merged. Two resulting rasters for benthic
and geomorphic maps are created, with specified values for land
pixels, valid mapped ACA habitat pixels, and unmapped ocean
pixels (hereafter referred to as deep water pixels).

The habitats in the map are expressed as integer values in the
set {0, 1, . . . 𝑛, 𝑠}, where 0 represents land, {1, . . . , 𝑛} are valid
aquatic habitats with nonzero pairwise dissimilarities, and 𝑠

represents deep water. A (𝑛 + 1) × (𝑛 + 1) symmetric matrix

stores the dissimilarity coefficients between respective habitats,
which is saved to a text file that is read in during the initialization
phase of RapidQ. The first line of this text file contains the integer
(𝑛 + 1), which Chapel uses to declare the array size for storing
the dissimilarity matrix (Listing 1).

The rasterized habitat map is then passed through a final
pre-processing phase before it is ready for use in RapidQ. A
Python-based Jupyter Notebook is used to load the map as a
NumPy array using the Geospatial Data Abstraction Library
(GDAL) package, whereupon the latitudinal index is reversed
and all 𝑠 values are replaced by (𝑛 + 1) to make the dissimilarity
table smaller. Finally, the array elements are converted to have
uint(8) type, and the array is saved to file in binary format. A
companion text file is saved to store the array size for RapidQ
to read in.

proc ReadArray(filename: string) throws {

var infile = open(filename, iomode.r);
var reader = infile.reader();

// Read the number of rows and columns
var m = reader.read(int);

// Declare an array of the specified dimensions.
var X: [1..m, 1..m] real(32);

// Read the array
reader.read(X);

}

Listing 1: Reading of dissimilarity matrix

3.2 The RapidQ algorithm
At its core, RapidQ is a highly optimized and parallelized algo-
rithm for calculating and summing over a histogram at every
point in an image. At any given point x, the histogram records
the number of times that each habitat type appears within a
circular “window” of diameter 𝐿 centered at x. Dividing the
histogram by the number of valid habitat pixels in the window
yields a vector of probabilities, P. Taking the outer product of P
with itself yields the probability matrix 𝑃𝑖𝑃 𝑗 . Rao’s Q is calcu-
lated by double contracting 𝑃𝑖𝑃 𝑗 with the dissimilarity matrix
𝐷𝑖 𝑗 , which is read from file and has a copy stored on each Chapel
locale.

When executed from the command line, RapidQ takes as
input the name of the image file to be processed, the size of
the window (in hectares), and the resolution of the image (in
meters). The algorithm is schematized in Figure 1.

3.3 Masking with sparse domains
One of the key optimizations in RapidQ is that the window is
convolved over the image in an order that minimizes the number
of total computations. For example, consider a computational
sequence in which habitat heterogeneity is calculated at location
x = (𝑖, 𝑗) using a window with 𝐿 = 100 (see Figure 1). Once that
sequence is complete, the window is moved one pixel to the
right to x = (𝑖 + 1, 𝑗). The location of the new window largely
overlaps that of the previous window, except for two thin slivers
of points on the rightmost edge of the new window and the
leftmost edge of the previous window, respectively (Figure 2a).
Therefore, rather than calculating P for all 7,854 points in the
new window, it is considerably more efficient to save P from the
overlapping region, adding the contribution from the 100 points
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Figure 1: Schematic showing the procedure for calculating 𝑄 at a single point. Habitat map courtesy of the Living Oceans
Foundation [22].

on the right edge of the new window, and discarding the contri-
bution from the left edge of the previous window. Applying this
technique over the full image, the computational complexity
of RapidQ is reduced from 𝑂 (𝑀𝑁𝐿2) to 𝑂 (𝑀𝑁𝐿), which is a
substantial improvement when using larger windows.

proc create_masks(radius: real, dx: real, L: int) {

const r = L/2;
const Dom : domain(2, int) = {-r..r, -r..r};
var Dom_center : sparse subdomain(Dom);
var center_mask : [Dom_center] bool;
// Set Implicitly Replicated Value (IRV) to "true"
center_mask.IRV = true;

var dist : real;

// Define center mask.
for (i,j) in Dom do {
dist = dx * sqrt(i**2 + j**2);
if (dist < radius) {
Dom_center += (i,j);

}
}

Listing 2: Creation of center mask

RapidQ follows this strategy by employing sparse domains
to assign the locations of points in the left, center, and right sub-
regions (“masks”) of the window. Listing 2 shows how the center
mask, Dom_center, is defined inside the function create_masks
using a Euclidean distance calculation. Here the argument ra-
dius represents the radius of the window in physical dimensions
(equal to 𝑟 = 𝐿/2 multiplied by the pixel resolution in meters,
𝑑𝑥 ). Any point whose physical distance from the center pixel is
less than radius is added to Dom_center, whose corresponding
sparse boolean array has a default value of true. The sparse
domain for the left edge, Dom_left, is then populated by con-
sidering all points in Dom_center and selecting those points
(𝑖, 𝑗) whose neighbor to the left, (𝑖 − 1, 𝑗), is not in Dom_center
(Listing 3). The selected point is then removed from Dom_center
to ensure there is no double-counting of points. An analogous

procedure is used to populate Dom_right and remove its points
from the center mask, so the final result is three non-overlapping
masks that together form the circular window. A local copy of
each mask is created on each Chapel locale to eliminate any
accesses to remote memory later on.

var Dom_left : sparse subdomain(Dom);
var left_mask : [Dom_left] bool;
left_mask.IRV = true;

// Define left mask
for (i,j) in Dom do {
if ( Dom_center.contains(i,j) &&

(i == -r || !Dom_center.contains(i-1,j)) ) {
Dom_left += (i,j);

}
}

// Remove overlapping points from center mask
for (i,j) in Dom_left do {
if Dom_center.contains((i,j)) {
Dom_center -= (i,j);

}
}

Listing 3: Creation of left mask

3.4 Distributed computations and I/O
The RapidQ algorithm is embarrassingly parallel since each row
of the image can be processed independently from the others.
The program exploits this parallelism by using Chapel’s Block
distributed array type to partition the input image into smaller
pieces, each of which is assigned to its own Chapel locale (Figure
2b). To ensure that the window is contained entirely within the
domain of the image, the expand method is used to create a
halo of width 𝑟 around the edge of the image where 𝑄 is not
calculated. The interior of the image, Inner, is where the window
is convolved and is contained within the thick dashed red line
in Figure 2b. The distribution of the Block domain, 𝐵, is defined
by partitioning Inner among the locales (thin dashed red lines).
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(Dom_left) (Dom_center) (Dom_right)

Locale 0

Locale 1

Locale 2

Locale 3

March left to rightb

a

Figure 2: a) Convolution strategy using sparse domains. b)
Block distribution of input image among locales, includ-
ing halo region (red shading, shown for Locale 0 only).

The array OutputArray is distributed according to 𝐵, and stores
the 𝑄 calculations on each locale.

The computation strategy shown in Figure 2a dictates that
the window is marched from left to right across each row of the
image. The only locations where all three masks in the window
need to be calculated (and therefore are the most expensive
to compute) are along the left edge of each Block subdomain.
RapidQ employs a subtle optimization strategy to minimize the
number of left edge points by reshaping the Block distribution
so that the subdomains are rectangular strips across the full
width of the image, rather than the default “as square as possible”
configuration (Listing 4).

const Inner = ImageSpace.expand(-r);
// Split the indices up only along the first dimension
const myTargetLocales = reshape(Locales,

{1..Locales.size, 1..1});
const B = Inner dmapped Block(Inner,

targetLocales=myTargetLocales);
var OutputArray : [B] real(32);

Listing 4: Distributed output array, neglecting halo region

RapidQ minimizes the memory burden on each locale by load-
ing only the part of the image that is needed to calculate its own
portion of B. Each locale also needs to load a halo of width 𝑟

around its portion in order calculate 𝑄 up to the edges of Inner,
which is depicted for Locale 0 by the red shaded region in Figure
2b. This is achieved by using the expand method to define a
domain on each locale, locB_plus, that contains all the necessary
points. The first and last methods define opposing corners of
this domain, and are used to calculate the offset and bounds for
reading the input image from binary (Listing 5).

coforall loc in Locales do on loc {

var locB = B.localSubdomain();
var locB_plus = locB.expand(r);
var locImage : [locB_plus] int(8);

var f = open(filename, iomode.r);
var start = locB_plus.first[0]*locB_plus.shape[1]

+ locB_plus.first[1];
var g = f.reader(kind=ionative, region=start..);

// Read local portion of input image
for (i,j) in locB_plus {
var tmp : int(8);
g.readBinary(tmp);
locImage[i,j] = tmp;

}

r.close();
...

Listing 5: Distributed read

Each row of the image can be calculated independently from
the others, but each pixel within that row depends on the pre-
ceding computation at the pixel to its left. Therefore, after the
image is partitioned onto each locale, Chapel will attempt to
process the rows in parallel using as many tasks as it thinks is
appropriate, which is generally the number of available cores.
Each task will begin the calculation of 𝑄 at the left edge of the
row and march rightward.

For the habitat diversity problem being considered here, there
are a relatively small number of habitat types (d_size=𝑂 (1)) rela-
tive to the number of pixels in the window (generally thousands
to hundreds of thousands). Therefore, an efficient solution strat-
egy is to simply count the instances of each habitat type within
the window and save them in a histogram (Figure 1). To align
with the strategy in Figure 2a, a separate histogram must be
created for each of the three sparse domains comprising the
window. These are labeled H_left, H_center, and H_right, respec-
tively, and the algorithm specifies the order in which they are
added, updated, or discarded to achieve the desired result (List-
ing 6). Once this sequence is complete at each point, the final
histogram is stored as H.
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// Create a unique thread for each row
forall center in B.localSubdomain()[..,first_point] {

// Calculate histograms and habitat heterogeneity at
// leftmost point in this row
var H_left: [0..<d_size] real(32) = 0;
var H_center: [0..<d_size] real(32) = 0;
var H_right: [0..<d_size] real(32) = 0;

for m in Dom_left do {
var tmp = Image[(center,first_point) + m];
H_left[tmp] += 1;

}
for m in Dom_center do {
var tmp = Image[(center,first_point) + m];
H_center[tmp] += 1;

}
for m in Dom_right do {
var tmp = Image[(center,first_point) + m];
H_right[tmp] += 1;

}

var H = H_left + H_center + H_right;
var H_old = H;

// Perform habitat heterogeneity calculation using H
...

// Calculate histograms and habitat heterogeneity
//for all other points in this row
for point in (first_point+1)..last_point do {

// Reset and calculate H_right
H_right = 0;
for m in Dom_right do {
var tmp = Image[(center,point) + m];
H_right[tmp] += 1;

}

// Keep the old center, discard the old left,
// and add the new right
H = H_old + H_right - H_left;
H_old = H;

// Reset and calculate H_left
H_left = 0;
for m in Dom_left do {
var tmp = Image[(center,point) + m];
H_left[tmp] += 1;

}

// Perform habitat heterogeneity calculation using H
...

}

Listing 6: Convolution across each row

The calculation of 𝑄 proceeds by dividing each bin of H by
the total number of valid habitat pixels in the window, creating
the discrete probability distribution P (Listing 7). Taking the
outer product of P with itself creates a probability matrix, which
is multiplied elementwise by the dissimilarity matrix 𝐷𝑖 𝑗 . The
final value of 𝑄 is calculated by performing a sum reduction of
the result. A slight modification to the original Rao’s Q formula
that we use is to multiply 𝑄 by the proportion of valid habitat
pixels in the window, which is saved as habitat_frac. This natu-
rally scales down the calculated diversity in regions where there
are a small number of good pixels, such as along coastlines or
adjacent to deep water. This is a completely optional step and
does not add any significant complexity to the algorithm, but we
employ it as an alternative to simply neglecting points if they
fail to have a certain proportion of good points in the window.

// Count number of valid habitat pixels
var num_habitat_pixels = (+ reduce H[1..(d_size-2)]);
var habitat_frac = num_habitat_pixels / Mask_Size;

var P = H / num_habitat_pixels;

var Q = + reduce (dissimilarity * outer(P,P));
// Scale Q by habitat_frac
Output[center,point] = (habitat_frac * Q);

Listing 7: Reduction of histogram

The final phase of RapidQ involves writing OutputArray to
file. This step uses Chapel’s C-interoperability feature to create
an interface to the NetCDF-C library [25], which saves data in a
hierarchical data format that is favored in the geosciences. Akin
to the way the input image was read, a single output NetCDF file
is written to in parallel by creating a separate task on each locale
using a coforall loop. Each locale writes its piece of OutputAr-
ray to the appropriate position in the file in order to create an
assembled mosaic like in Figure 2b. The final result mirrors the
input image and clearly indicates hotspots of habitat diversity
(Figure 3).

4 RESULTS AND PERFORMANCE
A prototypical test problem for RapidQ was created using a ge-
omorphic habitat map for Roatan Island, Honduras (Figure 3),
which was generated using the procedure outlined in Section 3.1.
Given the ACA resolution of 5 meters and the scale shown in
the bottom right corner of the Figure, this map contains approxi-
mately 11, 000 × 4, 000 pixels. Calculating𝑄 using a 100-hectare
window around each point, a naive calculation of the habitat
heterogeneity map would require 𝑂 (1012) floating-point cal-
culations. Anecdotally, a serial execution of such a calculation
using MATLAB took over one week to complete on a laptop,
and nearly three days to complete using Microsoft Azure cloud
services (no formal timings are available). This program did not
employ the solution strategy in Section 3, however, so the im-
provement of the Chapel program is due to a combination of
algorithmic efficiency as well as Chapel’s inherent performance.
We emphasize that a direct comparison of Chapel versus MAT-
LAB is not the focus of this paper (nor would be useful for our
research purposes), and the performance metrics shown here
are only with regard to the Chapel implementation.

The RapidQ version of this problemwas tested on the Cheyenne
supercomputer at the National Center for Atmospheric Research.
Cheyenne is a SGI ICE XA Cluster with 145,152 Intel Xeon pro-
cessor cores in 4,032 dual-socket nodes (36 cores/node). Each
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Figure 3: Top: ACA geomorphic habitat map for Roatan Island, Honduras. Bottom: Habitat heterogeneity calculated using
the above habitat map.

processor is a 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) per-
forming at 16 flops per clock cycle. The tests used Chapel version
1.28, with settings CHPL_COMM=gasnet and
CHPL_COMM_SUBSTRATE=ibv. RapidQ was deployed on 10
nodes (360 cores) for 20 trials, reaching completion in an av-
erage of 6.2 seconds. This performance is achieved through a
combination of RapidQ’s solution strategy (reducing computa-
tional complexity by 𝐿 ≈ 225) and parallelism (x 360), resulting
in an overall speedup of roughly five orders of magnitude.

Weak and strong scaling analyses of RapidQ were also per-
formed on Cheyenne, with both types conducted on
[ = {1, 2, 4, 8, 16, 32, 64, 128} nodes. For the weak scaling anal-
ysis, an artificial habitat map was created by filling an array
with 108 points per node with random integers between 0 and
13, mimicking the geomorphic diversity calculation shown in
Figure 3 (12 valid habitat types, plus land and deep water). The
convolution window was configured to contain 106 pixels.

Two variants of the weak analysis were performed. The first
variant initialized the image as a square, such that its shape was
104√[ × 104√[ pixels. The second variant initialized the image
as an elongated rectangle with 104[ × 104 pixels. On a per-node
basis, both variants have the same number of pixels, but the sec-
ond variant contains

√
𝑛 more points along its left edge, which

is the most computationally expensive part of the image. There-
fore, comparison of the two variants tests the hypothesis that
the computation time is improved by minimizing the number of
left edge points per locale, e.g. following the locale reshaping
strategy in Listing 4.

Figure 4a shows the results of the weak scaling analysis,
where the plots indicate an average over 20 independent tri-
als. The plots are normalized by the average time to completion
on a single node, where a value of 1 indicates perfectly linear
scaling (the computation is performed exactly as fast as using
purely local memory). Overall RapidQ demonstrates excellent
weak scaling, maintaining a parallel efficiency greater than 0.8
out to 16 nodes and almost 0.6 even at 128 nodes. Interestingly,
the performance between the square and rectangular domain
shapes retains parity through about 16 nodes as well, but beyond
that the square domain computation completes progressively
more quickly. This result supports shaping theBlock distributed
domain as shown in Figure 2, though it also indicates that the

b

a

Figure 4: a) Weak scaling analysis. b) Strong scaling analy-
sis.

performance hit would not be too severe if this approach was
not taken.

Figure 4b shows the strong scaling analysis, which uses a
fixed image size of 104 × 104 pixels for all node counts. Here
the values are normalized by the average time to completion on
a single node times the number of nodes, so that a value of 1
indicates that the time to completion on𝑚 nodes would be 1/𝑚
(smaller values imply slower execution). RapidQ shows fairly
little dropoff in parallel efficiency even at very high levels of
parallelism, though these results would suggest there is little
speedup to be gained beyond 64 nodes for this problem size. The
exact reason for the steeper dropoff in performance at high node
counts is unclear.
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In practice one would likely never need to scale beyond 32
nodes in any case. For a problem needing > 32 nodes the time
to simply preprocess the ACA image would massively exceed
the processing time in RapidQ, and memory would be a major
limiting factor. So for all practical purposes the relevant node
counts for RapidQ would be 16 or less, where both strong and
weak scalings show excellent results.

5 CONCLUSION
RapidQ employs several powerful features in Chapel to both
parallelize and streamline the calculation of habitat heterogene-
ity. Chapel’s Block-distributed arrays allow the embarrassingly
parallel nature of the computation to be exploited, and for the
program to achieve near-linear performance improvements as
it is scaled up. The use of sparse domains permits significant
improvements to the computational algorithm itself, avoiding
a substantial number of redundant calculations and leading to
a massive performance increase independently from the par-
allelism. In total, Chapel allows habitat heterogeneity maps to
be calculated multiple orders of magnitude faster than the in-
cumbent MATLAB program, reducing the time to completion
from days down to seconds. Furthermore, the final code is very
concise and expressive, making it easy to build upon for the
future.

The RapidQ application is a compelling and impactful ex-
ample of how parallel programming with Chapel can enable
cutting-edge science. The usage of RapidQ shown here focuses
on a highly relevant and urgent problem in marine ecology and
conservation, which is to inform the location and management
of marine protected areas, as well as helping to shape field cam-
paign strategies. Its performance has spurred investigation into
problems that were previous thought to be intractable, such as
creating a global database of habitat heterogeneity calculations
at multiple scales. It has also helped to engender other, more
challenging research problems; for example, the calculation of
spectral diversity [34], which is even more computationally in-
tense than habitat diversity and requires a multi-dimensional
version of Rao’s Quadratic Entropy.

There is significant opportunity for RapidQ to grow and to
be applied in fields besides marine ecology, and considerations
are being made about how best to disseminate it among the sci-
entific community. A separate effort is underway to improve its
performance even more, for example via deployment on graphi-
cal processing units (GPUs) or through further improvements to
the algorithm. In summary, its current successes are motivating
further work, and we expect RapidQ to have many opportunities
to prove its value going forward.
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