
Coupling Chapel-Powered HPCWorkflows for Python
John Byrne

john.l.byrne@hpe.com
Hewlett Packard

Enterprise

Harumi Kuno
harumi.kuno@hpe.com
Hewlett Packard

Enterprise

Chinmay Ghosh
chinmay.ghosh@hpe.com
Hewlett Packard

Enterprise

Porno Shome
shome@hpe.com
Hewlett Packard

Enterprise

Amitha C
amitha.c@hpe.com
Hewlett Packard

Enterprise

Sharad Singhal
sharad.singhal@hpe.com
Hewlett Packard

Enterprise

Clarete Riana
Crasta

clarete.riana@hpe.com
Hewlett Packard

Enterprise

David Emberson
emberson@hpe.com
Hewlett Packard

Enterprise

Abhishek
Dwaraki

abhishek.dwaraki@hpe.com
Hewlett Packard

Enterprise

Figure 1: Powered by Chapel, Arkouda, and OpenFAM, the FAM Dataset Storage Manager enables Python programmers to fully
utilize Fabric-Attached Memory to create incrementally-updated shared datasets that speed time to results.

ABSTRACT
Decades ago, when data analytics was known as data mining, there
was an adage – “No data, no mining!” The pendulum has swung to
the opposite extreme, as everything from hospitals to cars now pro-
duce massive quantities of data. We address the challenge of how
to lower the barrier for efficiently processing massive quantities
of data. We propose a solution that enables ordinary Python pro-
grammers to share results while working efficiently with datasets
that can be too large to process using a single commodity machine.
Our solution leverages Chapel, Arkouda, and OpenFAM to hide
complexity, transparently enabling programmers to process large
amounts of data on clusters of compute nodes while making it easy
for them to share and incrementally maintain derived datasets.
ACM Reference Format:
John Byrne, Harumi Kuno, ChinmayGhosh, Porno Shome, Amitha C, Sharad
Singhal, Clarete Riana Crasta, David Emberson, and Abhishek Dwaraki.
2023. Coupling Chapel-Powered HPC Workflows for Python. In CHIUW
2023. ACM, New York, NY, USA, 7 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHIUW’23, June 2023, USA
© 2023 Copyright held by the owner/author(s).

1 INTRODUCTION
The goal of this work is to demonstrate an early proof of concept
of how Python programmers can take full advantage of Fabric-
Attached Memory (FAM) and solve problems that are too large to fit
into the memory of a cluster of compute nodes. High Performance
Computing (HPC) is characterized by computationally demanding
workloads that discover or create intellectual products and that
respond to scale, meaning that if more resources are applied, a more
valuable product will be produced[6]. As the amount of available
data has increased, the scope of HPC workloads has expanded to
include AI andData Analytics, andAI andData Analytics workloads
have expanded to take on an HPC-like response to scale[6]. It is
thus important to lower the bar and enable HPC, AI, and Data
Analytic communities to make effective use of available resources,
including pools of FAM.

To this end, we bring together Arkouda, Chapel, and OpenFAM
and propose a FAM dataset storage management system [4, 5, 7].
As sketched in Figure 1, the FAM Dataset Storage Manager is de-
signed to enable programmers to increase dataset size and and to
improve the throughput of their analytics. Ingested and derived
data is processed and stored incrementally in a FAM Dataset Store,
after which the programmer can define new derived columns and
new derived datasets by applying operations such as filter, scatter,
gather, and sort. To execute such operations in parallel, the FAM

CHIUW’23, June 2023, USA Byrne et al.

Dataset Storage Manager uses Chapel, Arkouda, and OpenFAM to
page batches of data from FAM into the memory of compute nodes
for efficient local processing. In this way, the FAM Dataset Stor-
age Manager supports FAM datasets that exceed the total DRAM
capacity of compute nodes.

Once stored in FAM, these results can be shared with other pro-
grammers and used to speed time-to-results for further operations.
Furthermore, the FAM Dataset Storage Manager tracks and stores
the workflows used to create derived datasets and columns. Besides
enabling programmers to update their derived data on-demand in
interactive sessions, this also means that as new data is added to
a FAM Dataset Store, derived datasets and columns can be main-
tained by an automatic update processor, sketched in the upper
right-hand corner of the figure. Our approach opens the door for
enabling suspend-and-resume and recovery-from-failure.

In the remainder of this paper, we describe our solution. We
discuss our goals and general approach in Section 2. We have com-
pleted a preliminary implementation that demonstrates our ap-
proach running on an HPC cluster of HPE nodes connected using
HPE’s Slingshot hardware. We describe our extensions to Chapel
and Arkouda that support this proof-of-concept in Section 3, then
discuss in Section 4 how we used those extensions to implement
a FAM Dataset Storage Manager as a Python application. We dis-
cuss related work in Section 5. Finally, we conclude in Section 6
by briefly summarizing the contributions of this work and lessons
learned, and describing potential next steps.

2 APPROACH
The Arkouda Python package enables data scientists to interactively
explore extremely large datasets extremely efficiently. At its heart,
Arkouda makes it easy for Python programmers to work with
parallel distributed arrays (pdarrays) as first-class Python objects.
Each Arkouda pdarray object represents a collection of physical
in-memory data arrays. The Arkouda server is written in Chapel,
and thus each Arkouda pdarray object represents a collection of
physical in-memory data arrays stored in the memory of compute
nodes. The Python programmer can work with these arrays as they
would work with a numpy array; they can sort, filter, and perform
other operations upon those arrays, thereby producing results as
new, derived, pdarray objects. The programmer simply invokes
these operations; the Arkouda server then uses Chapel to distribute
the operations across multiple compute nodes and execute them
efficiently, in parallel.

The OpenFAM library for programming Fabric-Attached Mem-
ory enables the creation of pools of fabric-attached memory (FAM)
hosted on conventional servers. Developers can write programs
that, using the OpenFAM API, perform remote direct memory ac-
cess (RMDA) operations on the disaggregated memory. Program-
mers can use the OpenFAMAPI to allocate shared memory to create
regions of FAM from a given pool, as well as data items within re-
gions. The OpenFAM API supports a host of data path operations
on data items, including put, get, scatter, gather, copy, backup, and
restore, as well as standard atomic operations such as fetch-and-add,
compare-and-swap, etc. For example, Figure 2 shows an OpenFAM
client program that has performed a gather operation to collect two

values from an array of data stored in a FAM data item residing in
a FAM region hosted by three memory nodes.

Figure 2: OpenFAM client programs can access data items
residing in FAM regions hosted on OpenFAM servers.

OpenFAM API also includes map and unmap operations so as
to support load/store operations on remote memory, as well as a
variety of operations and constructs that facilitate the ordering of
operations, including barriers, and support for user-specific context
objects. For more information, readers are referred to the OpenFAM
Reference Implementation [1].

One benefit of FAM is cost-effectiveness, in that multiple com-
pute nodes can share a pool of high bandwidth, low-latency mem-
ory. However, although FAM offers much higher bandwidth and
lower latency than other forms of storage, remote memory is by
default lower bandwidth and higher latency than local memory.
Thus, when considering how to enable Arkouda users to exploit
FAM to solve problems that are too large to fit into the memory
of the compute nodes, we need to consider non-uniform memory
access times and are motivated to leverage local memory where
possible.

A second, significant, benefit of FAM is that data stored in the
memory pool can be shared between multiple users and processes.
This means that results can be stashed in FAM and leveraged to
speed time to future results.

The key ideas of our approach are illustrated in Figure 1. Sketched
in the box labeled “1” at the bottom of the right-hand side of Fig-
ure 1, base data and metadata are stored in FAM as discrete batches.
Batches are sized such that a single batch of data can be efficiently
processed by the Arkouda Server within the memory of the com-
pute nodes. The FAM Dataset Storage Manager, instances of which
are shown in the boxes labeled “2” at the top of the right-hand
side of Figure 1, manages metadata and data, organizing the dis-
crete batches of data into logical FAM Datasets. Each FAM Dataset,
sketched in the light green box labeled “3” in the middle of the
right-hand side of Figure 1, represents a logical integrated view of
a collection of related batches of data that have accummulated over
time.

Similar to an Arkouda DataFrame, a FAM Dataset consists of an
index, column names, and column data. However, one difference is
that FAM index and column data are composed of multiple batches

Coupling Chapel-Powered HPC Workflows for Python CHIUW’23, June 2023, USA

of data. A second difference is that the FAM Dataset Storage Man-
ager supports the creation of derived indexes and columns that
are defined by applying operations to existing FAM indexes and
columns. Operations that produce new indexes (e.g., filter, sort_runs,
and sort) produce derived datasets. Operations that use existing
orderings to produce new column data (e.g., gather, scatter, subtrac-
tion, addition) produce derived columns. The FAM Dataset Storage
Manager lets programmers snapshot FAM data into Arkouda pdar-
rays or Arkouda DataFrame objects.

As shown in Figure 1, FAM Datasets that reside in the same
FAM region are organized into a logical FAM Dataset Store. The
figure shows three FAM regions in the bottom right-hand corner
– one dedicated to “Taxi” data, one for “Plane” data, and one for
“Train” data. Themetadata records of the FAMDataset Store indicate
which batches of data have been published for all indexes and
columns. This means that the Dataset Storage Manager that created
them has made them available for use by other Dataset Storage
Manager instances running in other Python processes. The FAM
Dataset Store also records for each derived FAM Dataset index or
column which batches of data have been consumed from its sources.
Metadata itself is also shared on FAM in batches, so as to facilitate
sharing and maintenance.

In general, data can reside in the memory of the machine where
a Python program is executing, in the memory of the compute
nodes where an Arkouda Server is running, or in pooled Fabric-
Attached memory. Figure 3 sketches our approach, whereby shared
data and metadata resides in the FAM, in batches. When a Python
programmer operates upon a FAM Dataset, the FAM Dataset Stor-
age Manager pages batches of data from FAM into Arkouda parallel
distributed arrays (pdarrays) so that working data will reside in the
local memory of compute nodes. Similarly for the sake of perfor-
mance, each instance of the FAM Dataset Storage Manager main-
tains an in-memory working copy of the Dataset Store’s metadata
in Python.

Figure 3: Data and metadata are stored in batches on FAM
and processed in the memory of compute nodes.

3 EXTENSIONS TO CHAPEL AND ARKOUDA
We extended both Arkouda and Chapel in order to support FAM
Dataset storage management. These extensions, shown in Figure 4,
enable Python and Chapel programmers to create, access, and work
with named single-dimension arrays of data that reside in FAM.

Figure 4: New modules add support for FAM Store and
FAMArray to Arkouda and Chapel.

3.1 OpenFAMmodule and C linkage library for
Chapel

The Arkouda server is implemented in HPE’s Open Source Chapel
programming language. The Chapel compiler parses Chapel source
code and generates C code in the back end. The C code is in turn
compiled using a standard C compiler into an executable and linked
with the Chapel runtime library, which is written in C. Because
OpenFAM is written in C++ and provides C++ APIs, we added a C
linkage library that binds the OpenFAM C++ library to the Chapel
runtime, as well as an OpenFAM Chapel module that allows Chapel,
including the Arkouda server, to access the C linkage library.

3.2 FAMArrayStore module for Chapel
The OpenFAM module and underlying C linkage library simply
enables Chapel programs to invoke OpenFAM operations; it is not
responsible for managing Chapel tasks. As such, the OpenFAM
module requires that all the virtual addresses involved in remote
memory access (RMA) operations to the OpenFAM servermust exist
within the process address space of a single Chapel locale. Thus, a
thread running in a given Chapel locale cannot instruct OpenFAM
to read data from a different Chapel locale’s process space into FAM.
This requirement must be taken into account when performing IO
between FAM and Chapel distributed arrays. For example, because
the Chapel block distribution attempts to partition arrays evenly
across locales, in proportion to each array, if an array with 100
elements were to be distributed across two locales, we should place
50 elements in each locale, whereas an array with 1000 elements
would be distributed to place 500 elements in each locale.

The Chapel FAMArrayStore module handles such tasks, and
more, for the programmer. There is one instance of the Chapel
FAMArrayStore per OpenFAM region. Distinct arrays within a
given FAMArrayStore instance must have distinct names. The
FAMArrayStore supports an API for creating, looking up, and ma-
nipulating named arrays of data stored in FAM. The FAMArrayStore
module internally converts these high-level array operations into
FAM-specific accesses underneath. When an operation is invoked,

CHIUW’23, June 2023, USA Byrne et al.

each locale is then assigned a portion of the FAM data for process-
ing. Thus, parallel array operations are executed in parallel by the
Chapel programmer.

An example of the end-to-end result of the Chapel and Ark-
ouda extensions is sketched in Figure 5, which shows Python pro-
gram running on a laptop using the FAMArray Store (the variable
“fam_region” in the example) to manage arrays and scatter/gather
data across FAM and compute nodes.

Figure 5: Example of how the new modules extend the ex-
isting Arkouda package to let a Python programmer scatter
data across FAM and compute nodes.

Data and some metadata for each logical FAMArray is persisted
using objects in FAM. Persisted metadata includes the type and
number of items in the array. To support variable length strings,
the offsets and sizes of individual strings are stored for FAMArrays
containing PackedString data. Chapel FAMArrayStore instances
maintain internal state at runtime to enable the distributed pro-
cessing of FAM data by Chapel locales. For example, the Chapel
FAMArrayStore associates each Chapel locale with its own FAM
descriptors for accessing FAM objects and FAM regions.

The Chapel FAMArrayStore throws both FAM and FAMArray
errors as enumerated exceptions (e.g., FAM_ERR_NOTFOUND).
This enables programmers to reason about these exceptions in their
code – for example to implement a find-or-create pattern for a
named FAMArray.

At the current time, aggregation is implemented inside the Ark-
ouda server because it allows certain assumptions to be made that
simplify the logic. That said, the OpenFAM team has implemented
an extended Chapel OpenFAMmodule that explicitly supports FAM-
resident distributed arrays [3]. As Chapel evolves to support FAM
data types, we anticipate that Chapel’s support for auto-aggregation
may allow a generalized data movement solution to be written con-
cisely.

3.3 Extensions to the Arkouda Python module
Python programs using Arkouda act as clients of an Arkouda server,
which runs on nodes in a computing cluster. To facilitate this, Ark-
ouda provides the Python ‘pdarray’ class, each instance of which
represents a distributed in-memory array on the Arkouda server.
Through a combination of operator overloading plus additional

methods, the pdarray class allows a Python programmer to re-
motely invoke operations on the Arkouda server by sending wire
commands. Arkouda users can persist pdarray datasets by saving
them to or reading them from files stored on the underlying file
system using formats such as HDF5 and Parquet.

As sketched in Figure 5, we extended the Arkouda Python mod-
ule to expose the FAMArrayStore. Two new classes enable program-
mers to create and attach to FAMArrayStore instances (one FAMAr-
rayStore instance per FAM Region) and to manage the FAMArrays
stored within each FAMArrayStore:

• famstore class – A famstore object is a reference to a named
OpenFAM region opened by the Arkouda server that con-
tains FAMArrays.

• famarray class – A famarray object contains a reference to a
pdarray stored in FAM. The famarray class is cloned from
the pdarray class and modified to add lock/unlock meth-
ods. Operations can be performed on it to load/store data
to/from pdarrays in the server, and to logically lock/unlock
the famarray objects. These follow the patterns set by pdar-
ray. For example, __getitem__ and __setitem__ are used to
move data in and out of FAM using the existing syntax for
pdarrays.

3.4 Extensions to the Arkouda Server
Arkouda supports three styles of assignment/indexing operations
on pdarrays – simple assignment operations like put and get, which
involve a single index and a single value; slice operations, which ac-
cess a single pdarray using optional parameters of start (inclusive),
stop (exclusive), and stride; and scatter/gather operations, which
use a pdarray as an index to another pdarray. A new Arkouda
Server module, FamMsg, defines functions that extend the set of
wire commands supported by the Arkouda Server with operations
such as famStoreCreate, famStoreDelete, fam[int], fam[pdarray],
fam[int]=val, fam[pdarray]=val, fam[pdarray]=pdarray. The logic
for these operations is implemented using the Chapel FAMArray-
Store module. FAM objects participate in the Arkouda server’s
symbol table.

3.5 HDF5
Although it is not directly used by the FAM Dataset Storage Man-
ager at this moment, in addition to saving data directly as arrays in
FAM, we also added an OpenFAM connector for HDF5. As sketched
in Figure 6, the OpenFAM connector maps FAM storage into the
HDF5 data model through the VOL layer [2]. This connector enables
applications, regardless of programming language, to read/write
HDF5 datasets to FAM using the popular HDF5 data format. HDF5
access facilitates ports of existing applications that already use
HDF5. HDF5 access also eases the sharing of data between hetero-
geneous applications. For example, a data scientist may want to
work with data received from an external source in HDF5 format.

4 FAM DATASET STORAGE MANAGEMENT
WORKFLOW

The FAMArray extensions to the Arkouda and Chapel modules
make it very easy for Python and Chapel programmers to create,
access, and manipulate arrays of data stored in FAM. The heavy

Coupling Chapel-Powered HPC Workflows for Python CHIUW’23, June 2023, USA

Figure 6: The FAM volume connector lets users create, read,
and write HDF5 files on FAM. (This figure is based on a draw-
ing from slide 31 of [2].)

lifting provided by these extensions enabled us to implement the
FAMDataset StorageManager in user space as a Python application.
Because the FAMArray Store insulates the Python user from the
logistics of how to move data between the Arkouda servers and
FAM, the logic implemented to realize the FAM Dataset Storage
Manager largely focuses on metadata management, calling upon
the underlying FAMArray Store to perform appropriate operations.

4.1 Data is ingested and transformed into
batches

Ingested data is stored in FAM as single-dimension FAMArrays.
Each batch is broken into a single FAMArray per data field. For
example, Figure 7 sketches how a Chapel Ingest Application takes
as input some NYC taxicab data and stores it on FAM as num-
bered batches using FAMArrays. We will use this data as a running
example.

Figure 7: Data is ingested in ordered batches into discrete
arrays of data on FAM

4.2 Metadata
Both the indexes and column data backing a FAM Dataset Store are
stored in FAM using FAMArrays. In order to present this data in
terms of integrated logical FAM Datasets, the FAM Dataset Storage
Manager maintains and shares metadata about which FAMArrays
hold data for which columns and indexes and their batch iden-
tifiers, as well as metadata that tracks structural and derivation

relationships between columns and indexes/datasets. Other meta-
data associates unique (currently strictly increasing) identifiers with
data items, and tracks which batches of data a derived dataset has
processed from its parent data sources as well as which batches of
data have been published for a given index or column. Like index
and column data, shared metadata is stored on FAM in batches,
using FAMArrays.

For example, the left side of Figure 8 sketches the two batches of
data ingested in Figure 7. The figure shows that the FAM Dataset
Storage Manager uses metadata to present a dataset consisting of
five columns to Arkouda programmers: pickupzone, dropoffzone,
pickuptime, dropofftime, and fare.

Figure 8: Presenting discrete arrays of data in FAM as an
integrated FAM Dataset

For performance, when operating in Python, the FAM Dataset
Storage Manager manages working metadata about each running
instance in local memory. As noted in Section 3, the FAMArray
Store can store variable-length strings in arrays on FAM. The FAM
Dataset Storage Manager uses this functionality to implement an
internal mechanism for storing and incrementally updating these
Python dictionaries using append-only dictionaries as batches of
data stored in FAM. The FAM Dataset Storage Manager uses this
FAM dictionary mechanism to create, maintain, share, and incre-
mentally update its working metadata.

4.3 Derived columns and derived datasets
The FAM Dataset Storage Manager enables Python programmers
to create derived FAM columns and FAM Datasets using operations
such as filter, gather, add, subtract, topXperrun, sortruns, and col-
sort. For example, Figure 9 shows a derived dataset that consists of
the indices of items from the dataset in Figure 8 that correspond to
trips with fares greater than 10,000 cents ($100). As sketched in the
figure, at this point, this dataset consists of only an index – it has
no column data that corresponds to this index. Programmers can
invoke a “gather” operation to add columns to a derived dataset –
using an index to gather data from a parent dataset into a column
on a child dataset.

Derived columns represent values associated with indexed data
items. These values can be gathered directly from a derived dataset’s
parent dataset. For example, Figure 10 sketches a “gather” operation
that collects the “pickuptime” values for trips with fare greater than
$100 USD and stores them in batches that together comprise a new
derived column associated with the derived dataset from Figure 9.

CHIUW’23, June 2023, USA Byrne et al.

Figure 9: A derived dataset consists of index data.

Figure 10: A gather operation materializes a column of inter-
est, adding it to a derived dataset.

4.4 Order-Preserving vs. Order-Destroying
Derivation Operations

Note that the FAM Dataset Storage Manager tracks the number of
batches available from a derived data object’s parent as well as the
number of batches processed when driving the data object’s con-
tent. Explicitly tracking this information enables the FAM Dataset
Storage Manager to offer incremental processing when updating
derived columns and datasets.

To support incremental processing in the face of updates to the
underlying base data, the FAM Dataset Storage Manager internally
distinguishes between order-preserving versus order-destroying
derivation operationswhen creating derived datasets. Order-preserving
derivation operations operate per batch – the addition of a new
batch of data to the base dataset does not impact previously com-
puted results. For example, it is simple to update the derived dataset
index and its derived columns in response to the ingestion of an
additional batch of base Taxi data because the new batch can be
processed and simply appended to existing results. The same would
not be true for a dataset derived using a full sort operation on, for
example, the “fare” column of the base dataset, because the newly
added “fare” data could be scattered throughout the results when
sorted. Logical columns and datasets that are derived directly or
indirectly from order-destroying operations must be fully updated
when the data underlying the order-destroying operation changes.
For example, a column derived using a subtract operation upon two
columns gathered from an index defined by a full sort operation
must also be recomputed when the underlying base table changes.

To facilitate the incremental update of sorted data, the FAM
Dataset Storage Manager implements two order-preserving opera-
tions related to sort. The sort_runs operation produces a dataset
whose index represents a partially-sorted ordering in which each
batch’s results are individually sorted. Similarly, the topXperRun
operation extracts the top n elements from each batch, based on the

values of a specified column. Datasets and columns derived using
these operations can be incrementally updated.

4.5 Incremental Updates
Because the FAM Dataset storage manager tracks the derivation
relationships between datasets and stores both base and derived
Datasets in FAM, it can leverage prior results and update datasets
incrementally in response to changes to base datasets. Incremental
processing offers the added advantage that it enables Arkouda
programmers to work with data sets that far exceed the combined
memory of compute nodes.

It is important that all times during update, the metadata behind
FAM Datasets must be kept in a consistent state, where consistent
means that every batch of data that is published as available is actu-
ally available, and that the metadata dictionaries accurately reflect
column name / dataset relationships. To incrementally update all
derived FAM Datasets in a FAM Dataset Store, the FAM Dataset
Storage Manager walks through all FAM Datasets from oldest (e.g.,
the base FAM Datasets and other ancestors of derived datasets) to
the newest. For each FAM Dataset, if it is a derived dataset, it first
updates the FAM Dataset’s index data by applying the appropriate
operations upon its data sources. It then walks through the FAM
Dataset’s columns, from oldest to newest and similarly updates the
column data as appropriate.

The update methods that operate upon index data and column
data have a parameter “Increment”, which defaults to True so that
by default the FAM Dataset Storage Manager will compare the
published batch identifiers of the data source to the identifiers of
batches that have been previously consumed, and not recompute
results unnecessarily. If the “Increment” parameter is set to False,
then the FAM Dataset Storage Manager will recompute all index
and column data – we use this option to evaluate the impact of
incremental updates.

4.6 Automatic Updates
In order to support automatic updates, the FAM Dataset Storage
Manager exposes a method that users can call to register a derived
FAM Dataset and all of its ancestors for automatic updates. This
method basically adds these FAM Datasets to an internal meta-
data list of registered derived datasets that should be automatically
updated.

The FAM Dataset Storage Manager’s update method accepts an
optional parameter – “autoupdate”, which defaults to False. When
“autoupdate” is set to True, instead of walking through all FAM
Datasets from oldest (e.g., the base FAM Datasets) to the newest
(the most recently derived), it will instead walk through the base
FAM Datasets and just the derived FAM Datasets that have been
registered for automatic update. Automatic updates can then be
realized by running an Arkouda Server on one or more compute
nodes and then running a simple Python script that invokes the
update method with autoupdate=True. This Python update script
can be added directly to the ingest process or invoked periodically
(e.g., through a cron job, as sketched in Figure 1).

Coupling Chapel-Powered HPC Workflows for Python CHIUW’23, June 2023, USA

5 RELATEDWORK
Our proof-of-concept demonstrates mechanisms that enable Python
programmers to get full use from an HPC cluster equipped with
a pool of Fabric-Attached Memory. Our extensions to Chapel and
Arkouda shield Chapel and Python programmers from the complex-
ity of reasoning about how to work with disaggregated memory
when working with a compute cluster. Our FAM Dataset Storage
Manager leverages these extensions to shield Python programmers
from the complexity of reasoning about how to derive datasets
through workflows and to maintain derived index and column
data automatically and incrementally. Because our batch-centric
approach is designed to process large datasets incrementally, we
enable Python programmers to use FAM and process datasets that
potentially exceed the memory of compute nodes by transparently
paging batches data between FAM and compute-node memory.

Other researchers and practitioners focus on paging data at the
granularity of memory pages. For example, Peng et al. provide
UMap, a scalable and extensible userspace service for memory-
mapping datastores that mapping datastores into the application
process’s virtual memory space to provide a unified “in-memory”
interface [8]. In another example, Wahlgren et al. investigate the
feasibility of using CXL type 3 devices to implement and use a CXL-
based composable memory subsystems on future HPC systems
by emulating how various workloads would perform if executed
using a combination of local and pooled memory [9]. Unlike such
approaches, our approach keeps the working dataset in the memory
of compute nodes, when possible using bulk transfers to move data
between local DRAM and FAM.

6 CONCLUSIONS AND NEXT STEPS
We have implemented a proof-of-concept that demonstrates how
Python users can interactively use an HPC cluster of HPE nodes
connected using HPE’s Slingshot hardware to create, operate upon,
and incrementally maintain logical datasets that represent batches
of data stored in fabric attached memory (FAM). As sketched in
Figure 1, we dedicate an Arkouda server to process updates, use
compute nodes to run Chapel ingest programs that add new batches
of data to FAM Datasets, and dedicate a partition of memory nodes
to serve as a memory pool, via OpenFAM Servers.

As mentioned earlier, the FAM Dataset Storage Manager was
implemented in Python. We find that from a Python programmer’s
perspective, the Chapel and Arkouda famarray modules success-
fully hid the complexity of moving data between the memory pool,
the compute nodes, and the Python program.

We have also identified some opportunities for future improve-
ments. For example, when working with a library that uses a com-
munications library such as OFI or verbs, registering all the memory
in one’s heap up-front can be good for performance, and in fact
Chapel does this internally for itself. We believe there may be a
performance benefit if the FAMArray module could get access to
the Chapel registered heap and register it for its own endpoints for
use by OpenFAM. Doing this would let the Chapel FAMArray mod-
ule use that memory when moving data between remote memory
managed by OpenFAM. The challenge is how to enable the “user-
level” Chapel FAMArray module to get a pointer to the Chapel heap.
Chapel does have a non-advertised function for getting the Chapel

heap, and we were able to use it (after turning off stack checking).
However, one thing that was not addressed out-of-the box was that
if the Chapel program is compiled to execute on a single node, then
the Chapel compiler will believe that no inter-node communication
is necessary and thus will not register a heap. This is an issue in our
case because the FAMArray module would still like to register the
Chapel heap in order to move data between Arkouda processes and
the OpenFAM servers. We have filed a “wish list" issue for Chapel,
requesting an environment variable that we could use to override
single node case, forcing Chapel to, for example, build for an OFI
communications library.

This project represents a work-in-progress. We anticipate that
when the work described in [3] is merged into Chapel, then it will be
straightforward to to port the FAMArraymodule to use the resulting
extended Chapel. We believe that our approach for supporting
automated incremental updates opens the door to explore useful
functionality such as suspend-and-resume, operation-offloading,
and recovery-from-failure.

We are also interested in the exploration of the potential benefits
of applying our array/batch-oriented approach to Dataset Storage
Management beyond OpenFAM to other mechanisms for sharing
data – for example, using a filesystem or formats such as Parquet,
Feather, Arrow, or HDF5.

ACKNOWLEDGMENTS
We thank HPE’s OpenFAM and Chapel teams, as well as the Ark-
ouda community for their gracious and valuable support. We thank
the CHIUW reviewers for their thoughtful feedback and excellent
suggestions for improvement.

REFERENCES
[1] [n. d.]. OpenFAM Reference Implementation. Retrieved May 25, 2023 from

https://openfam.github.io/index.html
[2] M. Scot Breitenfeld, Elena Pourman, Suren Byna, and Quincey Koziol. 2020.

Achieving High Performance I/O with HDF5. HDF5 Tutorial ECP Annual
Meeting 20202. Retrieved April 21, 2023 from https://www.hdfgroup.org/wp-
content/uploads/2020/02/20200206_ECPTutorial-final.pdf

[3] Amitha C, Brad Chamberlain, Sharad Singhal Sharad, and Clarete Crasta. 2022.
Extending Chapel to Support Fabric Attached Memory. Retrieved April 21, 2023
from https://chapel-lang.org/CHIUW/2022/C.pdf

[4] Bradford L. Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael P.
Ferguson, Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov, Preston Sa-
habu, and Greg Titus. 2018. Chapel Comes of Age : Making Scalable Programming
Productive.

[5] Kimberly Keeton, Sharad Singhal, andMichael Raymond. 2019. The OpenFAMAPI:
A Programming Model for Disaggregated Persistent Memory. In OpenSHMEM and
Related Technologies. OpenSHMEM in the Era of Extreme Heterogeneity, Swaroop
Pophale, Neena Imam, Ferrol Aderholdt, and Manjunath Gorentla Venkata (Eds.).
Springer International Publishing, Cham, 70–89.

[6] Bill Magro. 2018. Software Foundation for High-Performance Fabrics in the Cloud.
Video. Retrieved April 21, 2023 from https://insidehpc.com/2018/04/intels-bill-
magro-presents-software-foundation-high-performance-fabrics-cloud/

[7] Michael Merrill, William Reus, and Timothy Neumann. 2019. Arkouda: Interactive
Data Exploration Backed by Chapel. In Proceedings of the ACM SIGPLAN 6th
on Chapel Implementers and Users Workshop (Phoenix, AZ, USA) (CHIUW 2019).
Association for Computing Machinery, New York, NY, USA, 28. https://doi.org/
10.1145/3329722.3330148

[8] Ivy Bo Peng, Maya B. Gokhale, Karim Youssef, Keita Iwabuchi, and Roger Pearce.
2022. Enabling Scalable and Extensible Memory-Mapped Datastores in Userspace.
IEEE Trans. Parallel Distributed Syst. 33, 4 (2022), 866–877. https://doi.org/10.1109/
TPDS.2021.3086302

[9] Jacob Wahlgren, Maya Gokhale, and Ivy B. Peng. 2022. Evaluating Emerging
CXL-enabled Memory Pooling for HPC Systems. In 2022 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC). IEEE. https://doi.org/10.
1109/mchpc56545.2022.00007

https://openfam.github.io/index.html
https://www.hdfgroup.org/wp-content/uploads/2020/02/20200206_ECPTutorial-final.pdf
https://www.hdfgroup.org/wp-content/uploads/2020/02/20200206_ECPTutorial-final.pdf
https://chapel-lang.org/CHIUW/2022/C.pdf
https://insidehpc.com/2018/04/intels-bill-magro-presents-software-foundation-high-performance-fabrics-cloud/
https://insidehpc.com/2018/04/intels-bill-magro-presents-software-foundation-high-performance-fabrics-cloud/
https://doi.org/10.1145/3329722.3330148
https://doi.org/10.1145/3329722.3330148
https://doi.org/10.1109/TPDS.2021.3086302
https://doi.org/10.1109/TPDS.2021.3086302
https://doi.org/10.1109/mchpc56545.2022.00007
https://doi.org/10.1109/mchpc56545.2022.00007

	Abstract
	1 Introduction
	2 Approach
	3 Extensions to Chapel and Arkouda
	3.1 OpenFAM module and C linkage library for Chapel
	3.2 FAMArrayStore module for Chapel
	3.3 Extensions to the Arkouda Python module
	3.4 Extensions to the Arkouda Server
	3.5 HDF5

	4 FAM Dataset Storage Management Workflow
	4.1 Data is ingested and transformed into batches
	4.2 Metadata
	4.3 Derived columns and derived datasets
	4.4 Order-Preserving vs. Order-Destroying Derivation Operations
	4.5 Incremental Updates
	4.6 Automatic Updates

	5 Related Work
	6 Conclusions and Next Steps
	Acknowledgments
	References

