A Record-Based Pointer to Fabric Attached Memory

Amitha C

amitha.c@hpe.com
Hewlett Packard Enterprise

Sharad Singhal
sharad.singhal@hpe.com
Hewlett Packard Enterprise

ACM Reference Format:

Amitha C, Clarete Crasta, Brad Chamberlain, Sharad Singhal, Dave Ember-
son, and Porno Shome. 2023. A Record-Based Pointer to Fabric Attached
Memory. In CHIUW 2023. ACM, New York, NY, USA, 3 pages.

1 ABSTRACT

Fabric Attached Memory (FAM) enables fast access to large datasets
required in High Performance Data Analytics (HPDA) and Ex-
ploratory Data Analytics (EDA) [1] applications. The Chapel lan-
guage is designed for such applications and helps programmers
via high-level programming constructs that are easy to use, while
delegating the task of managing data and compute partitioning
across the cluster to the Chapel compiler and runtime. Our previous
work[9] integrates FAM access within Chapel using a language-
provided feature called user-defined array distributions[5]. To sup-
port more general computational patterns using FAM from Chapel
through abstracted language constructs, we have enabled a record-
based pointer type to the FAM-resident data object and enabled
access to the FAM memory through these pointers.

2 BACKGROUND

Fabric Attached Memory [7] is disaggregated memory available
to the compute nodes, over fast interconnects such as Slingshot.
FAM helps large HPC and HPDA applications with datasets larger
than the available DRAM of the nodes. As shown in Figure 1 ,
Fabric Attached Memory architecture is implemented using globally
accessible memory nodes attached to compute nodes through a
high-speed network such as Slingshot. The architecture can scale to
support petabytes of globally addressable fabric-attached memory
and more than 10,000 compute nodes. All compute, I/O and FAM
resources are independently scalable as necessary. The modular
design ensures that the architecture can take advantage of new
technologies as they become available. In future, the architecture
can be enhanced to take advantage of the GFAM feature proposed
in the CXL 3.0 specification [11] and support other forms of Storage
Class Memory (SCM) from different vendors.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2023 Copyright held by the owner/author(s).

Clarete Crasta
clarete.riana@hpe.com
Hewlett Packard Enterprise

Dave Emberson
emberson@hpe.com
Hewlett Packard Enterprise

Brad Chamberlain
bradford.chamberlain@hpe.com
Hewlett Packard Enterprise

Porno Shome
shome@hpe.com
Hewlett Packard Enterprise

‘ Ccmm H Comm H tome rw. |rfaﬂwu 1]

FTi Trr

Slingshot system fabric

Figure 1: FAM Architecture

3 INTRODUCTION

Chapel [2], [3] is a language designed for programming high per-
formance parallel computing. At HPE, we are developing a large-
scale prototype for fabric attached memory, with multiple efforts
to identify how best to program FAM. Thus, enabling FAM support
in Chapel language becomes relevant. Even though the Chapel
language supports distribution of data and compute tasks across
the cluster by abstracting the underlying details, it does not pro-
vide any abstraction for disaggregated memory. In our previous
work[9], we added support for accessing FAM data through array
distributions[4], providing the same level of abstraction and par-
allelism that Chapel currently supports for data that is resident in
compute node memory. However, the array distribution is a spe-
cific use case of FAM and does not help in problems that require
complex data-structures like linked-lists, trees, or key-value stores.
Traditionally, programming languages use pointers to the user data,
which significantly simplifies the overall implementation in such
problems. Today, Chapel users can use Class objects to build these
complex data structures. However, the class object does not help in
constructing data-structures for disaggregated memory like FAM.

4 IMPLEMENTATION

Our solution provides a way to represent pointers to FAM and
supports accessing the FAM-resident data from Chapel through
these pointers. We support a pointer type in Chapel for the FAM
resident data through language constructs and support access to
the FAM data through these pointers by abstracting all the underly-
ing FAM access details from the user. This pointer internally holds
required details to locate the data on FAM and implement methods
to access user data on FAM. The FAM pointer is used to point to
any pre-existing data on FAM. Hence, the allocation and deallo-
cation of the FAM data-items are excluded from the FAM pointer

Conference’17, July 2017, Washington, DC, USA

definition. Figure 2 represents different FAM pointers (FAMptr)

FAMptrl FAMptr2 FAMptr-n
FAM handle FAM handle FAM handle
Type Type Type
Offset Offset Offset

Helper methods Helper methods Helper methods

Fabric Attached Memory

Figure 2: FAM Pointer

with the context required to access different FAM locations. The
FAMptr is implemented using Chapel’s record type and internally
uses the OpenFAM library [6] to access FAM. The FAMptr includes
details like data type, OpenFAM handle, and an offset to locate the
data residing on FAM. Additionally, it also includes methods that
are called to read from and write into the FAM location pointed
to by the FAMptr. The FAMptr also supports pointer arithmetic
operations.

record FAMptr {
type t; // the type the pointer is pointing to
var fam_handle:fam_desc; // descriptor for the FAM data item
var fam_offset:uint(64); // offset into the FAM data item

// Initialize FAMptr to point to data on FAM
proc init(data_type, fam_handle:fam_desc=c_nil) {

}

// Read the data from FAM
proc read(): t {

}

// Write data into FAM
proc write(value): {

}

// increment the FAMptr to point to next element
proc increment() {

}

// decrement the FAMptr to point to previous element
proc decrement() {

¥

// Support pointer arithmetic, modifies the offset accordingly
operator -(lhs:FAMptr, rhs:int) {

}
operator +(lhs:FAMptr, rhs:int) {

}

Figure 3: Record based FAMptr

Figure 3 shows a sample definition of the FAM pointer record.
The allocation and de-allocation of the FAM data objects are de-
coupled from the pointer definition. Hence, the user of a FAMptr
can use low-level OpenFAM APIs to manage the FAM memory.

Amitha C, Clarete Crasta, Brad Chamberlain, Sharad Singhal, Dave Emberson, and Porno Shome

The FAMptr is created similar to a typical record instantiation
in Chapel. The FAM pointer is a Chapel record instance that is
allocated on the compute node’s memory where it is declared, and
points to data on FAM. The FAMptr declaration requires the data
type being pointed at to be specified as an argument, as well as an
optional OpenFAM handle. A new pointer can also be created using
an existing FAMptr through the assignment statement. Like tradi-
tional pointers, the FAM pointer also supports arithmetic operations
like adding and subtracting integers to and from the pointer. Using
arithmetic operations, the pointer can be dynamically updated to
point to the intended location on FAM. Figure 4 shows how the

K1 1 K2 | Kn

Keys |
FAMptr1 FAMptr2 FAMptr-n
Values Eam handle FAM handle FAM handle
Type Type Type
Offset Offset Offset

Fabric Attached Memory

Figure 4: KVS for FAM

key-value pair can be represented for the FAM data store using FAM
pointer. The user data resides on Fabric Attached Memory. Each
key is associated with a value which is a pointer to FAM. And this
pointer holds the handle which has the required details to access
the FAM data. The key-value pair both reside on DRAM. Any query
or update to the user data through corresponding key-value pair is
internally translated into FAM data access which will be abstracted
from the user. Similar to the Key value store described here, any
data structure can be constructed where the actual payload resides
on FAM and the data-structure itself is stored on DRAM.

5 PROPOSAL EVALUATION

1 use FAMTypes; // new module for FAMptr definition

// use bindings to allocate/lookup OpenFAM regions and data items

// declare pointer to integer on FAM represented by FAM descriptor fd
50 var ptrl= new FAMptr(int, fd);
51 var ptr2=ptri; // ptr2 and ptrl pointing to same FAM location
65 ptrl.write(10); // write to FAM using ptril
66 writeln("lst elem =", ptr2.read()); // read from FAM using ptr2
80 ptr2.increment(); // point to next int
81 var ptr3 = ptri+l; // pointer arithmetic

112 var ptr4= new FAMptr(int) // ptr4 pointing to nothing initially

Figure 5: Example Chapel program for using FAMptr

A Record-Based Pointer to Fabric Attached Memory

We have prototyped and successfully tested an initial proof-of
concept implementation, which provides the following operations.

. Read from and write into FAM

. Pointer arithmetic operations like adding and subtracting inte-
gers to and from the pointer

Figure 5 shows our test Chapel program that creates a FAM
pointer to point to pre-existing FAM data that is represented by
an OpenFAM handle/descriptor. The program shows the reading
and writing into the FAM location using the FAM pointer and
does pointer arithmetic operation to traverse to the corresponding
location on FAM.

The FAMptr provides abstraction of the underlying details of
the OpenFAM library and helps to simplify the FAM access in the
application, without additional overhead. We tested the program
that serially updates every 8-byte integer of a 100MiB FAM data
using both FAMptr and OpenFAM APIs through Chapel bindings[9].
As shown in Figure 6, the performance of the FAM update opera-
tion when using bindings and FAMptr are nearly the same. Hence,
FAMptr provides the same performance of using low-level APIs
while also providing ease of FAM access to the developers.

Time taken for FAM update

43.78 43.97

0

Bindings FAMDptr

Figure 6: Time taken for FAM update - FAMptr vs FAM API

6 RELATED WORK

Chapel programmers can alternatively use low-level APIs directly
in the application through external libraries such as OpenFAM [6],
or DAOS [8], but application developers are required to understand
the APIs provided by those libraries, manage FAM, and handle
errors explicitly. This involves programming overhead, which is
not aligned with Chapel’s philosophy of programmer productivity.
Also, when using low-level APIs, the FAM handle returned from
the library is an opaque handle and the arithmetic operations are
not possible on them. Our solution leverages the OpenFAM library,
while making FAM operations transparent to the programmer, yet
providing the capability to perform arithmetic operations on them,
to help traverse the data items on FAM. We have completed a
prototype implementation and validation and are currently working
through enhancing the implementation. As next steps, we will
investigate supporting locality with FAM pointers which enables
executing the FAM access on the locale where the OpenFAM handle
is valid for the data without the user having to take care of this
explicitly. We will also add support for atomic access of the FAM

Conference’17, July 2017, Washington, DC, USA

data through FAM pointer. Since enabling pointers to FAM can be
beneficial to other programming languages, we plan to explore other
languages, where FAM support is being enabled. We will identify
and explore other use-cases for FAM pointers beyond complex data-
structures. One of the areas where FAM pointers can be beneficial
is where we want to cache FAM locations for easy access in DRAM,
such as in the implementation of Memcached [10].

ACKNOWLEDGMENTS

We would like to thank Harumi Kuno for reviewing this abstract
and providing valuable suggestions. We also thank the current and
past FAM hardware and software development team members for
all the work on Fabric Attached Memory.

REFERENCES

[1] I Peng, R. Pearce, and M. Gokhale, “On the Memory Underutilization: Exploring
Disaggregated Memory on HPC Systems,” in 2020 IEEE 32nd International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD),
Sep. 2020, pp. 183-190. doi: 10.1109/SBAC-PAD49847.2020.00034.

[2] “Chapel Project Home Page” https://chapel-lang.org/ (accessed Apr. 01, 2022).

[3] Bradford L. Chamberlain. “Chapel”. In: Programming Models for Parallel Com-

puting. Ed. by Pavan Balaji. MIT Press, 2015. Chap. 6, pp. 129-159.

[4] Chapel: Standard Layouts and Distributions: https://chapel-
lang.org/docs/modules/layoutdist.html

[5] B.L.Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi, “User-defined distributions
and layouts in chapel: philosophy and framework,” in Proceedings of the 2nd
USENIX conference on Hot topics in parallelism, USA, Jun. 2010, p. 12.

[6] K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A Programming
Model for Disaggregated Persistent Memory,” in OpenSHMEM and Related Tech-
nologies. OpenSHMEM in the Era of Extreme Heterogeneity, Cham, 2019, pp.
70-89. doi: 10.1007/978-3-030-04918-8_5.

[7] “OpenFAM: A library for programming Fabric-Attached Memory”
https://openfam.github.io/index.html (accessed Aug. 29, 2021).

[8] “DAOS and Intel® OptaneTM Technology for High-Performance Stor-
age” Intel. https://www.intel.com/content/www/us/en/high-performance-
computing/daos-high-performance-storage-briefhtml (accessed Apr. 01,
2022).

[9] Extending Chapel to Support Fabric Attached Memory https://chapel-
lang.org/papers/CUG,022.pd f

[10] "Memcached" https://memcached.org/

[11] "CXL" https://www.computeexpresslink.org/download-the-specification

=

