—1

Hewlett Packard
Enterprise

A RECORD BASED POINTER TO FAM

C, Amitha Co-Authors:

2" June, 2023 Clarete Riana Crasta
Brad Chamberlain
Sharad Singhal
Dave Emberson
Porno Shome

AGENDA

e Fabric-Attached Memory(FAM) - Context
e Why Chapel?
 FAM enablement in Chapel

e Our previous work on FAM access from Chapel
e Pointer to FAM - Design

o Example use-case of FAM pointer
» Status and Next Steps

FABRIC-ATTACHED MEMORY(FAM)

e Converging memory and storage

» Resource disaggregation leads to high capacity shared
memory pool

» Local volatile memory provides lower latency, high
performance tier

e Distributed heterogeneous compute resources
e High-speed interconnect
e Operating system instance per compute node

e Fabric Attached Memory is
« Large - enabling workloads with large data sets

e Shared - enabling communication across compute
nodes through FAM

Compute e

I

Slingshot system fabric

[e | el | [e |

DRAM/
Optane/

CXLMem

DRAM/
Optane/

Il
CXL Mem

DRAM/
Optane/

CXLMem

DRAM/
Optane/

il

CXLMem

CHAPEL

Our Goal:
Enable FAM access through multiple programming languages to make FAM available for a variety of workloads.

FAM enablement in Chapel, because Chapel is :

- written for HPC

scalable: Designed to be as scalable as MPI & OpenMP parallel computing
fast: performance competes with or beats C/C++ & MPI & OpenMP
portable: runs on laptops, clusters, the cloud, and HPC systems
Programmable: Designed with programmer productivity in mind

open source: hosted on GitHub, permissively licensed

Guiding Philosophy
- Access FAM-resident data with minimal language changes
- Abstraction of FAM access from the application

FAM ENABLEMENT IN CHAPEL - PREVIOUS WORK

Chapel bindings for FAM
e Enable calls to low-level FAM APIs from the application
e Developed thin C wrapper over OpenFAM C++ library
e Chapel module called “OpenFAM” under /modules/packages
e Provides no abstraction

FAM distributed arrays

+ Array resides on FAM ===
» Supports implicit parallelism through domain partitioning
« Converts high level array operations into FAM-specific D | | | || |
accesses underneath Node 0 Node 1 Node 2 Node 3
o Abstracts away FAM access details from the application

FAM ACCESS THROUGH POINTER TYPE

Problem Solved

* Extend the support for FAM access using language
construct

* Enable data-structures like list , map etc for FAM

Proposed Solution
« Enable support for pointer to FAM (FAMptr)
e Use OpenFAM library for accessing FAM
e Support pointer arithmetic
e Provides abstraction with no performance overhead

High Level Design:
* Points to pre-existing data residing in FAM
* FAMptr includes handle to the FAM data location and
details like data type, offset, size etc.
* Access to FAMptr internally gets translated to OpenFAM
APls

* Allocation and destroy of OpenFAM region and data items
are done through Chapel binding APIs

E—

FAMptrl FAMptr2 FAMptr-n
FAM handle FAM handle FAM handle
Two Type Type

Offset Offset
Helper methods Helper methods Helper methods
Fabric Attached Memory

FAM POINTER TYPE - STATUS

Current Status

e Developed new module - FAMTypes
Creation and deletion of FAMptr
Read, write fo FAM location through FAMptr
Increment and decrement FAMptr

Pointer arithmetic operations on FAMptr
In progress
« Atomic access to FAM through FAMptr

 Explore different use-cases for FAMptr

Next Steps
e Enhance the FAMptr implementation and support

E—

use FAMTypes; Af new module for FAMptr definition

ff use bindings to allocateflookup OpenFAM regions and data items

/f declare pointer to integer on FAM represented by FAM descriptor fd

58 war ptrl= new FAMptr{int, fd);

51 wvar ptr2=ptrl; ffopte2 and ptrl pointing to same FAM location
65 ptrl.write(ld); S weite to FAM using ptrl

66 writeln{“ist elem =", ptr2.read()); ff read from FAM using ptr2

B8 ptr2.increment(); Jf point to next int

Bl war ptr3 = ptri+l; Jf pointer arithmetic

112 var ptrd= new FAMptr{int) ff ptrd pointing to nothing initially

Examples of FAM access using FAMptr from Chapel

EXAMPLE USE-CASE FOR FAMPTR- KVS

Key-value pairs for FAM K1 K2 Kn
« Key resides on DRAM while actual payload on FAM - l l 1
» Each key is associated with a value which is a —L— 2= L
FAMptr Values | e ot hendie FAM handle FAM handle
« Any query or update to the user data through key- Tipe opes; Toe
value pair is internally translated into FAM data
access

Fabric Attached Memory

Contact Details
amitha.c@hpe.com

ACKNOWLEDGMENT

We would like to thank Harumi Kuno for reviewing and providing valuable suggestion on this

work. We also thank current and past FAM hardware and software development team members
for all the work on Fabric Attached Memory.

mailto:amitha.c@hpe.com

REFERENCES

1. Peng, R. Pearce, and M. Gokhale, “On the Memory Underutilization: Exploring Disaggregated Memory on HPC Systems,” in 2020 IEEE 32nd International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD), Sep. 2020, pp. 183-190. doi: 10.1109/SBAC-PAD49847.2020.00034

Chapel project home page: https://chapel-lang.org/

‘Chapel’, Bradford L. Chamberlain, Programming Models for Parallel Computing, edited by Pavan Balaji, published by MIT Press, November 2015.

Chapel: Standard Layouts and Distributions: https://chapel-lang.org/docs/modules/layoutdist.html

B. L. Chamberlain, S. J. Deitz, D. lten, S-E Choi, “User-Defined Distributions and Layouts in Chapel: Philosophy and Framework” in 2nd USENIX Workshop on Hot Topics in

Parallelism (HotPAR’10), June 2010, Berkeley, CA, https://www.usenix.org/legacy/events/hotparl0/tech/full_papers/Chamberlain.pdf

https://github.com/OpenFAM/OpenFAM

7. K.Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A Programming Model for Disaggregated Persistent Memory,” in OpenSHMEM and Related Technologies.
OpenSHMEM in the Era of Extreme Heterogeneity, Cham, 2019, pp. 70-89. doi: 10.1007/978-3-030-04918-8_5.

8. “DAOS and Intel® OptaneTM Technology for High-Performance Storage,” Intel. https:/www.intel.com/content/www/us/en/high-performance-computing/daos-high-
performance-storage-brief.html (accessed Aug. 27, 2020).

9. C, Amitha et al,, “Extending Chapel to Support Fabric Attached Memory”, Presented at CUG 2022, Monterey, California, May. 2022. https://chapel-
lang.org/papers/CUG_2022.pdf

10. https://memcached.org/

11. https://www.computeexpresslink.org/download-the-specification

e W

o

https://chapel-lang.org/
https://github.com/OpenFAM/OpenFAM
https://chapel-lang.org/papers/CUG_2022.pdf
https://memcached.org/
https://www.computeexpresslink.org/download-the-specification

THANK YOU

FABRIC-ATTACHED (DISAGGREGATED) MEMORY IN CONTEXT

Physical
Server

Physical
Server

1/0 Network

SoC

SoC

SoC

SoC

Local DRAM

Local DRAM
(°)
=
o]
(]
(4
>~
1™
o
£
@
=

Local DRAM

Local DRAM

Shared something

NVM

NVM

NVM

NVM

Fabric-Attached
Memory Pool

12

OPENFAM

e Develop an API and reference implementation to
enable programmers to easily program FAM.

e Challenges
e APl should be “natural” to HPC programmers.

» Usable across scale-up machines, existing scale-out
clusters, and emerging FAM architectures.

Compute Nodes + Locally-Attached Memories (LAMs)

Node 1 Node 2 Node 3 Node N
Processing
Elements (PEs)
[oran] | [oran]| [Bran]
3 ‘ One-sided
|Data moverl |Data mover| |Data moverl Operations
3 3
Region 1 Region 2 Region R
L
Data items [| u m N L] 0 H
HE m O I

More detail available from

Keeton K, Singhal S., Raymond M. (2019) The OpenFAM API: A Programming Model for
Disaggregated Persistent Memory. In: Pophale S., Imam N., Aderholdt F,, Gorentla Venkata M.
(eds) OpenSHMEM and Related Technologies. OpenSHMEM in the Era of Extreme
Heterogeneity. OpenSHMEM 2018. Lecture Notes in Computer Science, vol 11283. Springer,
Cham

Open source reference implementation: hitps:/github.com/OpenFAM

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

Status:
* Reference implementation is available
* Omnipath and Infiniband clusters

* Currently we are
* Optimizing the implementation
* Adapting it for slingshot

https://github.com/OpenFAM

