—1

Hewlett Packard
Enterprise

CHIUW 2023:
STATE OF THE CHAPEL PROJECT

Brad Chamberlain
June 2, 2023

WELCOME TO THE 10™ ANNUAL CHIUW WORKSHOP!

=== CHIUW 2014 ((o-==

Can a single parallel language be ...
... as productive as Python? CHIUW: Chapel Implementers and Users Workshop

... as fast as Fortran? http://chapel.cray.com/CHIUW.html
... as scalable as MPI? Friday, May 23rd, 2014
Advance Program

Attend CHIUW on Friday and hear about how the Chapel
community is working to make this vision a reality!

The Chapel Implementers and Users Workshop, to be held in conjunction with IPDPS 2014, will
'T‘h‘“mi‘:""s”““ rrojeet be the first in what is anticipated to be an annual series of workshops designed to bring
e S — developers and users of the Chapel language (http://chapel.cray.com) together to report on work
R being done with the language across the broad open-source community. Attendance is open to
anyone interested in Chapel, from the most seasoned Chapel user or developer to someone simply
curious to learn more. On behalf of the Chapel community and CHIUW steering committee, we
hope to see you at CHIUW!

rams
Rishi Surendran, Jisheng Zhao, Vivek Sarkar (Rice University), Michael Ferguson (Laboratory for Telecommunication Sciences)

Gachi i
Michael Ferguson (Laboratory for Telecommunication Sciences)
3:15-3: Break

Community/Panel Discussion

3:30-4:30: __ Anyone whois interested

— | 2

WELCOME TO THE 10™ ANNUAL CHIUW WORKSHOP!

== CHIUW %

Can a single parallel

Vorkshop

... as productive as
... as fast as Fort
... as scalable

Attend CHIUW on Friday and hea.
community is working to make

vith IPDPS 2014, will
ps designed to bring

Introduction to Chapel, State of the Project

530-900, _Brad Chamberlain, Cray Inc
Technical Talks: Application Studies
03 U i i
e e her to report on work
9:30 - 10:00: Evaluating ion PGAS.
v ohinav Vishna
10:00- 1030:

b A ttendance is open to

Technical

10:30 - 11:00:

s Kartsaklis, Seyong Lee, Tiffany M. Mintz

11:00- 11:30:

iniversity)

Technical Talks: C iler Optimizati .
T irolinginche On this day
h Rajeev Barua (University of Maryland), Michael Ferguson (Laboratory

12:00 - 1:00: Lunch {on your own)
Invited Talk: Robert Harrison

9 years ago

T00-145
ot e Gl oo Tt B S doamw w o " .
Technical Talks: C (continued) Brad Chamberlain is with Lydia Duncan. vee
o eng T, Ve Sakar R Universo), Wichoe ® May 23,2014 - ar
Technical Talks Runtlme Improvements

— still had a solid crowd at the end of a workshop on Chapel at the end of a week-long
lichael Ferguson (Laboratory for Telecommunication Sciences)

conference. Not a bad way to kick off what we intend to be an annual event.
http://chapel.cray.com/CHIUW.html

Community/Panel Discussion
3:30-4:30._ Anyone who's interested

— | 3

CHAPEL’S TURNING 20?!?

Cray first expressed its intention of developing new language(s) as part of HPCS in January 200

HPES

- - |
Overheard at SC2002 M Our Challenge M

Cray Response
on Software Productivity

Brad Chamberlain
Thomas Sterling
Terry Greyzck
The Cray Cascade Project

@ “Will any of the HPCS participants be working
on new parallel languages?”
- Users still don’t have the perfect language
- Or, existing ones haven’t come of age yet “How can we support parallel programming such
that it achieves Matlab-level approval ratings in
the parallel programming arena?”
¢ “Why don’t we have something like Matlab yet?”
- Certain Matlab characteristics resonate with users...
(And: “Where do we currently fall short?”)

- |
Language Wishlist UPES What else? UPES Cray PL Strategy pes

@ Graceful ramp for computation:

- global view with performance model
- ability to drop to local view for fine-tuning

¢ Portable

Need parallel language abstractions for:
- arrays
- sparse arrays
- collections: sets, sequences, hash tables, ...
- graph-based parallelism

Legacy Codes:

- Continue to support popular languages:
CAF, UPC, MPI, SHMEM, OpenMP

- Continue to leverage vectorization/parallelization

o1 4 Cray is interested in novel languages

- minimize artifacts that reveal architectural factors - abstract, composable operators for each expertise
message passing, shared memory, vectors, etc. . . X
SRR ™ ¢ Decoupled Organization: ¢ New Codes:
¢ Performance - decouple: computation from - Support novel languages to increase productivity:
i data structures from high-level: supports global view, performance model
L InterOperable with other Ianguages memory layout from low-level: supports local view; arch. neutral
@ Allows co ral features
4 Open sou:]

CRANY

we should continue to strive for increased abstraction

yet we’re nervous about the acceptance problem

(slides excerpted from a presentation at HPCS Software Productivity Workshop, January 16, 2003) I

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

» portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

HPC BENCHMARKS: CONVENTIONAL APPROACHES VS. CHAPEL

|
1
TTT“IAD'“MPHOPENMP L REE IZECELPEESs STREAM Performance (GB/s)
| config const n = 1_000 000, 0000 e T
(alpha_= OTOl; 25000 Cha%g?%%gfl—_—:—_— 7777777777777777777777777
-1 const Dom = Block.createDomain ({1l..n}); 0 O
N;j “lvar A, B, C: [Dom] real; % 15000 - e
10000 [~ e T e
g o e e i = JV B =2.0; 10100 I -
re, 51 sineot ounie, 015 j’;ijg—g;::‘ﬁ C =1.0; 0 1 1 1)
i 1632 64 128 256
‘ A = B + alpha * Ci; Locales (x 36 cores / locale)
HPCC RA: MPI KERNEL
RA Performance (GUPS)
14 -
12
aaaaa 10
forall (, r) in zip(Updates, RAStream()) do D g
T[r & indexMask].xor (r):; 8 6
4
2
O L 1

16 32 64 128 256
Locales (x 36 cores / locale)

APPLICATIONS OF CHAPEL

Python3 Client M apel Server

Socket

Code Modules

Distributed
Object Store

Platform MPP, SMP, Cluster, Laptop, etc.
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale ChOp: Chapel-based Optimization ChplUltra: Simulating Ultralight Dark Matter
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al. T. Carneiro, G. Helbecque, N. Melab, et al. Nikhil Padmanabhan, J. Luna Zagorac, et al.
Ecole Polytechnique Montréal U.S. DoD INRIA, IMEC, et al. Yale University et al.

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

P
Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity ChapQG: Layered Quasigeostrophic CFD
Tom Westerhout Nelson Luis Dias Rebecca Green, Helen Fox, Scott Bachman, et al. lan Grooms and Scott Bachman
Radboud Universit The Federal University of Parand, Brazil The Coral Reef Alliance University of Colorado, Boulder et al.
FEATUI‘;ES ENSEMBLES ° ‘IIIIIIIIIIIIIIII.

?

' .
82icpy
® oy .
E)(PI.ORATIONUPARAMETEMATIONALE § i
; &

CrayAl HyperParameter Optimization (HPO)

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

siaakaeidl Much more about Applications of Chapel throughout the day

: (images provided by their respective teams and used with permission) I 7

CHGL: Chapel Hypergraph Library Your Application Here?

CHAPEL ON
HPE CRAY EX / SLINGSHOT-11

ARKOUDA ARGSORT PERFORMANCE: CHIUW 2022

HPE Apollo (May 2021) ¥
o« HDR-100 Infiniband network (100 Gb/s)
e 73,728 cores / 576 nodes

e 72 TiB of 8—byTe values igg
e ~480 GiB/s (~150 seconds) 400

350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance

= HDR-100 IB May 2021, 128 GiB/node —¢— - - - - - - - - - - -

128 256 512 576
Nodes (128 cores/node)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE: TODAY

HPE Apollo (May 2021) ¥
o« HDR-100 Infiniband network (100 Gb/s)
e 73,728 cores / 576 nodes

. i _ 1200
72TiBot 8 byTe values Slingshot-11 April 2023, 32 GiB/node —eo—
« ~480 GiB/s (~150 seconds) 1000 = HDR-100 IB May 2021, 128 GiB/node —— -~~~ ~ —==— — — — — - -

Arkouda Argsort Performance

HPE Cray EX (April 2023) &—® y 800 - T
« Slingshot-11 network (200 Gb/s) M BO0 - T
e 114,688 cores / 896 nodes O 400 b------- - T

o 28 TiB of 8-byte values

e ~1200 GiB/s (~24 seconds) 200 p-- - A m s s oo oo

128 256 512 896
Nodes (128 cores/node)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE: TODAY

HPE Apollo (May 2021) ¥
e HDR-100 Infiniband network (100 Gb/s)

Arkouda Argsort Performance
e 73,728 cores / 576 nodes

* 72 TiB of 8-byte values 2888 ~ Slingshot-11 May 2023, 32 GiB/node —e— -~~~ — —— — — __
o ~480 GiB/s (~150 seconds) Slingshot-11 April 2023, 32 GiB/node —e—
/7000 |~ HDR-100 IB May 2021, 128 GiB/node —— ~~ ="~~~ "~~~

HPE Cray EX (April 2023) ®&—@ o 0000 [---------mmmmmmm e oo

. Singshot-L1 nefwork (200 G/ @ 000

e 114,688 cores / 896 nodes © 3000 b------- T

« 28 TiB of 8-byte values 2000 P-----orF e oo oo

« ~1200 GiB/s (~24 seconds) 1000 - """ """ mmm s s :
HPE Cray EX (May 2023) &———§ v 1024 2048 4096 8192

o Slingshot-11 network (200 Gb/s)
o 1,048,576 cores / 8192 nodes
o 256 TiB of 8-byte values
« ~8500 GiB/s (~31 seconds)
A notable performance achievement in ~100 lines of Chapel

: | 11

Nodes (128 cores/node)

HPE CRAY EXIMPROVEMENTS

Other New Features on HPE Cray EX:

e ability to run multiple locales per compute node
—locale per NIC
—locale per socket

« ability to devote a core to handling communication

What’s Next?

« Extend the above features to other platforms
—most notably GASNet over InfiniBand

« Perform additional benchmarking studies at scale (HPCC, Bale, PRK, ...
— comparing to reference versions in MPl and SHMEM

12

DYNO:
REVAMPING THE CHAPEL COMPILER

DYNO IN A NUTSHELL

Motivation:
« The Chapel compiler was originally written quickly, by a small team, as a research project
« As aresult, it tends to be...
...slow

..difficult to understand when there are errors
...not terribly well-architected: inflexible, challenging to get started with

This Effort:

« Last year, we kicked off an effort fo massively rearchitect it, to address these lacks:
— better user experience in terms of speed and errors
—easier for developers to start contributing to

—more flexible and capable:
- separate compilation / incremental recompilation
- better support for tools
- dynamic evaluation of code

—

14

DYNO HIGHLIGHTS SINCE CHIUW 2022

e Key elements of ‘dyno’ are now used in the Chapel release:

1.27.0: its parser and AST became the default
1.28.0: ‘chpldoc’ was rewritten to use its front-end library

Chapel
source

new parser >

e Other key elements are well underway:

1.29.0: its framework for improved error messages came online
‘main’: its scope resolver is now used by default (and will be in this month’s 1.31.0 release)

immutable
uASsT

i
- |\\ I
| incremental resolver "
———————— 7 p 4
7 |

« type/call resolver: the major components exist in draft form
o AST save/restore: a key step foward separate compilation

o Chapel language server: in support of modern IDE features

—

old AST
(untyped)

\Y

progressive lowering
with whole-program
passes

old resolver >

old AST
(typed)

codegen >

Y,

progressive lowering
with whole-program

passes

COMPILING CHAPEL TO GPUS

STREAM TRIAD USING GPUS AND CPUS: CHIUW 2022 (SINGLE-LOCALE)

stream-ep.chpl

config const n = 1 000 000 ‘cobegin { ... } creates a task
- - ’ per child statement

alpha = 0.01;

cobegin {
coforall gpuid in 1..numGPUs do on here.getChild (gpuid) { one task creates GPU tasks

var A, B, C: [l..n] real;
A =B + alpha * C;

var A, B, C: [l..n] real, @(tm———————l YNNI TIRIRI RSO R IE s
A =B + alpha * C;

This program uses all CPUs and GPUs
on a single compute node

STREAM TRIAD USING GPUS AND CPUS: TODAY (SINGLE-LOCALE)

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

cobegin {
coforall gpu in here.gpus do on gpu { Improved syntax for GPU sublocales
var A, B, C: [l..n] real;

A =B + alpha * C;

var A, B, C: [1l..n] real;
A =B + alpha * C;

This program uses all CPUs and GPUs
on a single compute node

[:::::] | 18

STREAM TRIAD USING GPUS AND CPUS: TODAY (MULTI-LOCALE)

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales do on loc {
cobegin {
coforall gpu in here.gpus do on gpu
var A, B, C: [1l..n] real;
A =B + alpha * C;

var A, B, C: [1l..n] real;
A =B + alpha * C;

Support for multi-locale GPU programs

This program uses all CPUs and GPUs
across all of our compute nodes

| 19

CHAPEL ON GPUS: PROGRESS SINCE CHIUW 2022

Status: Lots of progress in the past year:
—Mar 2022 (v1.26): first multi-GPU NVIDIA runs

- CHIUW 2022
—Jun 2022 (v1.27): first multi-locale, multi-GPU NVIDIA runs Throughout this time, ongoing improvements
—-Dec 2023 (v1.29): first heroic AMD runs in generality, features, and performance

—Mar 2023 (v1.30): first multi-GPU AMD runs
—Jun 2023 (v1.31): first multi-locale, multi-GPU AMD runs

21

STREAM TRIAD: GPU PERFORMANCE VS. REFERENCE VERSIONS

x__*S_tie_am_(_u_SI_ng_N_Vl[_)l_A_lf'l_X A2000) Stream (using AMD Instinct MI100) i
................ e o =3 - — = T

800
-@- Chapel
600

200

- C+CUDA

Throughput
(GiB/s)
S
o

Throughput
(GB/s)

100 -@- 1.30 (1.29+Eager Load+LICM)
-M- 1.30 Prerelease (1.29+Eager Load) 200
-9 1.29
0 | 1 | 0 1 1]
32 64 128 32 64 128
Number of Elements (M) Number of Elements (M)

Performance vs. reference versions has become increasingly competitive over the past 6 months

More about GPU Computing with Chapel in Session 5 today (1:35 PDT)

LANGUAGE AND LIBRARIES

CHAPEL 2.0

Background:

« For the past several years, we have been working toward a forthcoming Chapel 2.0 release
« Infent: stop making backward-breaking changes to core language and library features

Status as of CHIUW 2022:

« Major language-related changes were considered to have largely wound down (ha!)
e Primary remaining effort was on stabilizing the standard libraries

24

CHAPEL 2.0 LIBRARY STABILIZATION

Status: Visualized

S2IWOLY

18 A\JUAS
S9|eJ07
UOILeZI|BILIUISAOIN AIOWS|A
S10443
pPauMQ / paleys
sAelly
sulewo(
sabuey
salAg / bulils
UOISIDA

oWl]

NCIEN
oWl | aleq
10113SAS
oIsegsAg

S
ss9204dqgns
sadA D
slalleg
wopuey
YleNoiny/yiew
1abatu|big
sadA |
STJTRETTEN
yied

Ol

ETE]E
19S5

de

ST
biyuod|dyd
sulijing

25

Review Started

Progress

CHAPEL 2.0 LIBRARY STABILIZATION

Status: Visualized

S2IWOLY
18 A\JUAS
S9|eJ07
SYCINUEIN
S10443
pPauMQ / paleys
sAelly
sulewo(
sabuey
salAg / bulils
UOISIDA

oWl]

NCIEN
oWl | aleq
10113SAS
oIsegsAg

S
ss9204dqgns
sadA D
S9AI423]|0D
wopuey
YleNoiny/yiew
1abatu|big
sadA |
STJTRETTEN
yied

Ol

ETE]E
19S5

de

ST
biyuod|dyd
sulijing

26

Review Started

Progress

Stable

NEW LANGUAGE AND LIBRARY FEATURES

» @attributes: for embedding information in code outside the language

e ‘Communication’ module: for single-sided puts/gets across locales

» new first-class function syntax: more aligned with Chapel’s procedures

» weak class pointers: for use with ‘shared’-based classes

» throwing initializers: for initializers whose post-field-init bodies may hit errors

27

PERFORMANCE OPTIMIZATIONS

PERFORMANCE OPTIMIZATIONS

Time (seconds)

Time (sec)

Block Scan Time
SGI 8600 (EDR IB) -- 48 GB / locale

.0 1 1 1)
16 64 128 240
Locales (x 40 cores / locale)
Arkouda Argsort Time
SGI 8600 (EDR IB) -- 8 KiB Arrays
6 ,,
Baseline ——
5 | Scan Optimization —e— -~ -~ - -~ ----------------- -2
Bucket Exchange —#—
4 ,,
2 ,,
1 ,,,
0 [- —- L 4 1 [
64 128 240

Locales (x 40 cores / locale)

Time (ms)

16-node Block Domain/Array Creation

8
7
6
5
4
3
2
;]
(0}
Domain Array
mChapel 1.28 1« Chapel 1.29
Stream IndexGather
3500 3372 300
3000 2910
2701 2673 250
2500
2160 200
2000
2 = 150
o O
1500
100
1000
500 50
0 0
mBase . Dedicated mLPS m2NICS mAll mBase . Dedicated wLPS m2NICS mAll

Time (seconds)

Performance (GiB/s)

120

100

80

60

40

20

Bigint Conversion Performance

Average Total Compilation Time

05 Mar

03 Jul 10 Jul 17 Jul 24 Jul

31 Jul 07 Aug

| 29

OUTREACH

CHAPEL BLOG

In December, we did a soft-launch of the Chapel Language Blog: https://chapel-lang.org/blog/

(C, Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

Featured Articles

* Welcome to the Chapel blog!

Posted on November 30, 2022

An introduction to the Chapel blog, and our intentions and plans for it.

* Advent of Code 2022: Twelve Days of Chapel

Posted on November 30, 2022

The Chapel team's plan for blogging during Advent of Code 2022.

* Announcing Chapel 1.30.0!

Posted on March 23, 2023

A summary of highlights from the March 2023 release of Chapel 1.30.0

* NetCDF in Chapel, Part 1: Interfacing with the C Library

Posted on April 26, 2023

An introduction to C interoperability in Chapel using the NetCDF library

—

(, Chapel Language Blog

About Chapel Website Featured Series Tags Authors All Posts

Announcing Chapel 1.30.0!
Posted on March 23, 2023

lags: Release Announcements

By Brad Chamberlain

The Chapel developer community is pleased to announce the release of Chapel version 1.30.0! To
obtain a copy, please refer to the Downloading Chapel page on the Chapel website.

Highlights of Chapel 1.30.0

@Attributes

Chapel 1.30.0 makes good on a longstanding intention to add a generalized attribute capability to
the language. These attributes are designed to convey information to the compiler—or other tools
—in a way that is integrated with the source code, extensible, and independent of keyword-based
language features.

At present, a small set of attributes is supported. In particular, there are a few attributes that can
be used to characterize the stability of a feature, as well as a chpldoc attribute for suppressing
the documentation for a particular declaration. As an example, the attributes on the following
procedure will generate a deprecation warning for any calls to foo() while also ensuring that
chpldoc does not generate documentation for foo() :

@deprecated("foo() is deprecated; please use 'newFoo()' instead")
@chpldoc.nodoc
proc foo() {
writeln("In foo()");
}

aos W N =

Future versions of Chapel will expand upon this initial set of attributes. To learn more about the
current support, refer to the Attributes in Chapel technical note.

(C, Chapel Language Blog

About Chapel Website Featured Series Tags Authors

Authors

The following authors have written articles on this blog:

Brad Daniel Jeremiah
Chamberlain Fedorin Corrado

Michelle Scott
Strout Bachman

| 31

https://chapel-lang.org/blog/

The 6th Annual
Parallel Applications Workshop,
Alternatives To MPI+X

Monday, November 13, 2023

Deadline: July 24, 2023
Submission Styles: Papers / Talks

WRAPPING UP

THE CHAPEL TEAM AT HPE, JUNE 2023

34

WHAT’S NEXT?

o Continue with Quarterly Releases: June, September, December, March
o September’s Chapel 1.32 will be a release candidate for Chapel 2.0

» HPE Cray EX: More Benchmarking and Tuning

» Dyno: Have it take over resolution of Calls and Types

e GPUs: More Features and Performance

 Blog: Hard-Launch

e User Support and Outreach

o Performance and Feature Improvements

35

INMEMORIAM

e Mike Merrill passed away on November 8™

e Mike was the chief architect and developer of Arkouda,
as well as a friend fo many on the Chapel project

massive scale
data science

Arkouda: NumPy-like arrays at massive scale
backed by Chapel

Michael Merrill*, William Reus', and Timothy Neumann?
U.S. Department of Defense Washington DC, USA
Email: *mhmerrill@mac.com, Treus@post.harvard.edu, itimothyneumannl@ gmail.com

: Mike’s obituary is online at: https://www.donaldsonclarksville.com/obituary/Michael-Merrill | 36

https://www.donaldsonclarksville.com/obituary/Michael-Merrill

INMEMORIAM

e Mike Merrill passed away on November 8™

e Mike was the chief architect and developer of Arkouda,
as well as a friend fo many on the Chapel project

massive scale
data science

Arkouda: NumPy-like arrays at massive scale
backed by Chapel

Michael Merrill*, William Reus’, and Timothy Neumann?
U.S. Department of Defense Washington DC, USA
Email: *mhmerrill@mac.com, Treus@post.harvard.edu, j5timothyneumann1@ gmail.com

More about Arkouda in
Session 3 today (11:45 PDT)

: Mike’s obituary is online at: https://www.donaldsonclarksville.com/obituary/Michael-Merrill | 37

https://www.donaldsonclarksville.com/obituary/Michael-Merrill

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
e (points to all other resources)

Social Media:
 Blog: https://chapel-lang.org/blog/
o Twitter: @ChapelLanguage
e Facebook: @ChapellLanguage

e YouTube: https://www.youtube.com/c/ChapelParallelProgrammingl anguage

Community Discussion / Support:

 Discourse: https://chapel.discourse.group/

o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel
o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

=

C::HA:EL
—)
Home

What is Chapel?
What's New?

Blog

Upcoming Events
Job Opportunities

How Can | Learn Chapel?

Contributing to Chapel
Community

Download Chapel

Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

Presentations
Papers / Publications

CHIUW
CHUG

Contributors / Credits

chapel+info@discoursemail.com

O:m@o
vHO

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores
« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

« open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides
« read a chapter-length introduction to Chapel
¢ learn about projects powered by Chapel

« check out performance highlights like these:

PRK Stencil Performance (Gflop/s)

NPB-FT Performance (Gop/s)

Gflopls

1632 64

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Library
config const n = 100; // use --n=<val> when executing to override this default

forall i in Cyclic.createDomain(1..n) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

THANK YOU

https://chapel-lang.org
@ChapelLanguage

