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Connected Components Problem

• Graph partition
• Given undirected graph G=<V,E> =G1+G2+…+Gk

• All vertices in Gi are connected with each other (or single vertex)

• Gi And Gj no overlap

• Importance
• Graph Structure 

• Algorithm
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Existing Methods (Abstract)

• Graph Traversal
• O(n) iterations

• Label Propagation/BFS  operations

• Tree
• n work-log(n) iteration

• Hooking-Compressing operation

• Disjoin Set
• Approximate linear time (sequential)

• Union-Find Operations
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Minimum-Mapping based Contour Algorithm
• Contour line

• Mapping the vertices to different contour lines
• Give edge <u,v>

• Search: minimum label of their ancestors
• Remap: Update labels of descendants

• Converge in log(n) time

• Feature 
• Simple Operations
• Easy to Parallel

• Algorithm
• Initialize the label array
• Repeat 

• Forall edge=<u,v>
• Minimum-mapping based on edge <u,v>

• Until converge
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Algorithm Implementations 

• Arkouda/Chapel Implementation
• Contour

• Variants (search steps, update methods) 
• C-1/C-2/C-S/C-CAS/C-Syn

• FastSV

• High-Level Graph Package Implementation
• LAGraph (C)

• Contour
• FastSV

• Low-Level Graph Package
• Graph Based Benchmark Suite –GBBS 

(C++)
• Contour
• Simplified SV 
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Experimental Results (number of iterations)
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C-2: search two steps
C-S: Simplified minimum-mapping
C-CAS: compare-and-swap operation for update

C-1: search one step
C-Syn: synchronization before updates
FastSV: state-of-the-art tree-based method



Experimental Results (performance)
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Multi-Locale Results
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Other Implementations (delaunay_n20)

• Chapel
• FastSV 0.290952s

• Contour 0.038154s

• LAGraph implementation (C+GraphBLAS)
• FastSV needs 0.0226186s

• Contour just like FastSV

• Graph Based Benchmark Suite (GBBS)
• Optimized SV:  0.022097s

• Contour: 0.012859s
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Conclusion

• Contour algorithm
• simple, easy to parallelize and high-performance for connected components

• Converge in O(log(n)) iterations

• How Chapel can affect the performance
• Compared with High-Level LAGraph(GraphBLAS) package (C) (Vector, Matrix)

• LAGraph/GraphBLAS cannot exploit fine and flexible parallelism like Chapel

• Chapel has a performance overhead

• Compared with the Graph-Based Benchmark Suite (GBBS) package (C++)
• GBBS cannot support distributed parallelism like Chapel

• Chapel’s overhead is relatively high
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Thank You!

Q&A
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