
Minimum-Mapping based
Connected Components Algorithm

Zhihui Du (Presenter)

Oliver Alvarado Rodriguez

Fuhuan Li

Mohammad Dindoost

David A. Bader
This research is supported by NSF grant CCF-2109988

Connected Components Problem

• Graph partition
• Given undirected graph G=<V,E> =G1+G2+…+Gk

• All vertices in Gi are connected with each other (or single vertex)

• Gi And Gj no overlap

• Importance
• Graph Structure

• Algorithm

2 June 2023 Zhihui Du 2

Existing Methods (Abstract)

• Graph Traversal
• O(n) iterations

• Label Propagation/BFS operations

• Tree
• n work-log(n) iteration

• Hooking-Compressing operation

• Disjoin Set
• Approximate linear time (sequential)

• Union-Find Operations

2 June 2023 Zhihui Du 3

FastSV

Minimum-Mapping based Contour Algorithm
• Contour line

• Mapping the vertices to different contour lines
• Give edge <u,v>

• Search: minimum label of their ancestors
• Remap: Update labels of descendants

• Converge in log(n) time

• Feature
• Simple Operations
• Easy to Parallel

• Algorithm
• Initialize the label array
• Repeat

• Forall edge=<u,v>
• Minimum-mapping based on edge <u,v>

• Until converge
2 June 2023 Zhihui Du 4

u v

f(u) f(v)

gf(u) gf(v)

mgf

Example

Initialization

Iteration 1

0 5 8 2 6 3 112

Iteration 2

Iteration 3

Iteration 4

Iteration 5

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4Given Path

MMS(1)1

L[w]=w

0 8 2 3 112MMS(1)2

MMS(2)1

MMS(2)2

MMS(3)1

MMS(3)2

MMS(4)1

MMS(4)2

MMS(5)1

MMS(5)2

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4

0 8 2 1

0 2 1

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4

0 2 1

0 1

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4

0 1

0 1

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4

0 1

0

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4

Iteration 6

MMS(6)1

MMS(6)2

0

0

0 5 14 12 13 8 10 15 2 6 9 11 3 7 1 4

5

Converge in log(n)
iterations

Algorithm Implementations

• Arkouda/Chapel Implementation
• Contour

• Variants (search steps, update methods)
• C-1/C-2/C-S/C-CAS/C-Syn

• FastSV

• High-Level Graph Package Implementation
• LAGraph (C)

• Contour
• FastSV

• Low-Level Graph Package
• Graph Based Benchmark Suite –GBBS

(C++)
• Contour
• Simplified SV

6

Experimental Results (number of iterations)

7

C-2: search two steps
C-S: Simplified minimum-mapping
C-CAS: compare-and-swap operation for update

C-1: search one step
C-Syn: synchronization before updates
FastSV: state-of-the-art tree-based method

Experimental Results (performance)

8

Multi-Locale Results

9

Other Implementations (delaunay_n20)

• Chapel
• FastSV 0.290952s

• Contour 0.038154s

• LAGraph implementation (C+GraphBLAS)
• FastSV needs 0.0226186s

• Contour just like FastSV

• Graph Based Benchmark Suite (GBBS)
• Optimized SV: 0.022097s

• Contour: 0.012859s

10

Conclusion

• Contour algorithm
• simple, easy to parallelize and high-performance for connected components

• Converge in O(log(n)) iterations

• How Chapel can affect the performance
• Compared with High-Level LAGraph(GraphBLAS) package (C) (Vector, Matrix)

• LAGraph/GraphBLAS cannot exploit fine and flexible parallelism like Chapel

• Chapel has a performance overhead

• Compared with the Graph-Based Benchmark Suite (GBBS) package (C++)
• GBBS cannot support distributed parallelism like Chapel

• Chapel’s overhead is relatively high

11

Acknowledgement

We appreciate the help from the Chapel and Arkouda community when we
integrated the algorithms into Arkouda. This research was funded in part by NSF
grant number CCF-2109988.

12

13

Thank You!

Q&A

	Slide 1: Minimum-Mapping based Connected Components Algorithm
	Slide 2: Connected Components Problem
	Slide 3: Existing Methods (Abstract)
	Slide 4: Minimum-Mapping based Contour Algorithm
	Slide 5: Example
	Slide 6: Algorithm Implementations
	Slide 7: Experimental Results (number of iterations)
	Slide 8: Experimental Results (performance)
	Slide 9: Multi-Locale Results
	Slide 10: Other Implementations (delaunay_n20)
	Slide 11: Conclusion
	Slide 12: Acknowledgement
	Slide 13

