
G. Helbecque†, J. Gmys†, T. Carneiro*, N. Melab†, P. Bouvry*

†Université de Lille, CNRS/CRIStAL UMR 9189, Centre Inria de l'Université de Lille, France
*Université du Luxembourg, DCS-FSTM/SnT, Luxembourg

10th annual Chapel Implementers and Users Workshop (CHIUW)
June 2, 2023

Towards a scalable load balancing for productivity-aware 
tree-search



2

Context

● Beginning of the exascale era1 (June 2022);

● Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.) and less and less reliable 
(Mean Time Between Failures – MTBF < 1h) systems1;

● Evolutionary school (MPI+X) vs. revolutionary school (Partitioned Global Address Space (PGAS) -
based environments).

1. Top500 ranking: https://www.top500.org/.

Fig. 2: The Frontier system at Oak 
Ridge National Laboratory.

Fig. 1: Frontier is the No. 1 system in the Top5001 

(since June 2022).

https://www.top500.org/


3

Context

● Focus on exact Branch-and-Bound (B&B) optimization 
methods to solve combinatorial optimization problems:

➢ Large tree size     →  Efficient data structure;
➢ High irregularity → Efficient dynamic load balancing 

mechanism.

● Motivating example: Permutation Flowshop Scheduling 
Problem (PFSP). Search trees for very hard PFSP instances 
contain up to 1015 explored nodes.

Branch-and-Bound (B&B)

?
?

Fig. 3: Mapping B&B to hardware. Fig. 4: Solution of a PFSP instance of 4 jobs and 3 machines.



4

State-of-the-art overview

● Most of existing parallel B&B algorithms are only guided by performance and benefit from problem-
specific optimizations:

➢ Multi-core CPUs: [Mezmaz2014], [Gmys2016];
➢ GPU and many-core: [Chakroun2013], [Melab2018];
➢ Clusters of GPUs: [Vu2016];
➢ Grid computing: [Mezmaz2007], [Drozdowski2011].

● Emergence of the PGAS-based Chapel productivity-aware parallel programming language 
(HPE/Cray): [Callahan2004], [Carneiro2020].

● Few studies investigate the PGAS-oriented approach in the parallel optimization setting: 
[Machado2013], [Munera2013].

Shared-memory  Distributed-memory    PGAS

Fig. 5: Parallel programming models.



5

Parallel design

● Asynchronous parallel tree exploration model:
➢ Unpredictable communications;
➢ Unbalanced work units → Work Stealing (WS).

● Depth-First Search (DFS):
➢ Memory Efficiency;
➢ Stack (LIFO).

Fig. 6: Illustration of the parallel tree exploration model.



6

Parallel design

Collegial multi-pool [Gendron1994].

At the process level

L
0

L
0

L
1

L
N



7

Parallel implementation

DistBag2 (“distributed bag”): parallel-safe distributed multi-pool implementation;

→ not suitable for DFS.

2. The Chapel’s DistributedBag module: https://chapel-lang.org/docs/modules/packages/DistributedBag.html.

Fig. 7: The DistBag data structure.

https://chapel-lang.org/docs/modules/packages/DistributedBag.html


8

Revisited into DistBag-DFS3:
● Work pools → non-blocking split deques [vanDijk2014], [Dinan2009];

● New WS mechanism:
➢ Bi-level (locality-aware);
➢ Random victim selection;
➢ Steal half.

Parallel implementation

Fig. 8: Simplified view of a non-blocking split deque.

3. The DistBag-DFS data structure: https://github.com/Guillaume-Helbecque/P3D-DFS/DistBag-DFS.

https://github.com/Guillaume-Helbecque/P3D-DFS/tree/main/DistBag-DFS


9

Productivity-awareness

Sequential vs. distributed parallel4:

→ Few more lines of code are required;
→ Generic approach: e.g. PFSP, Unbalanced Tree-Search benchmark (UTS), N-Queens.

4. G. Helbecque, el al. Productivity- and Performance-aware Parallel Distributed Depth-First Search (P3D-DFS), 2023.    
    https://github.com/Guillaume-Helbecque/P3D-DFS.

https://github.com/Guillaume-Helbecque/P3D-DFS


10

Experimental protocol

5. ULHPC supercomputers - Aion system: https://hpc-docs.uni.lu/systems/aion/.

● Hardware: ULHPC facilities5 
2x AMD Epyc ROME 7H12 @ 2.6 GHz (64 cores), 256 GB RAM;  
Fast InfiniBand HDR100 network.

● Applications: 
➢ PFSP → Taillard’s instances (20 jobs x 20 machines) [Taillard1993];
➢ UTS   → synthetic trees.

● Experiments:
➢ Memory consumption of DistBag vs. DistBag-DFS;
➢ P3D-DFS vs. MPI+X best known counterparts (≠ approaches). Fig. 9: The Aion system.

https://hpc-docs.uni.lu/systems/aion/


11

DistBag vs. DistBag-DFS

Fig. 10: Bag size according to the processing time
when solving PFSP instances in DFS.

≈ 11GB

● DistBag cannot ensure DFS 
exploration order

→ poor memory efficiency; 

● Memory consumption remains 
bounded using DistBag-DFS.



12

Experimental results at the inter-node level

Fig. 11: Absolute speed-up P3D-DFS vs. MPI-PBB in 
distributed-memory experiments.

6. J. Gmys. Parallel Branch-and-Bound for permutation-based optimization, 2023.                                                         
    https://doi.org/10.5281/zenodo.7674826.

● P3D-DFS vs. MPI-PBB6 (MPI+pthread);

● P3D-DFS competitive against its 
counterpart:

➢ ≠ WS mechanisms.

● MPI-PBB performs better solving the 
largest instance with the finest 
granularity:

➢ DistBag-DFS overheads (?).

94% of ideal speed-up

https://doi.org/10.5281/zenodo.7674826


13

Experimental results at the inter-node level

● P3D-DFS vs. MPI-PUTS7 (MPI+MPI);

● P3D-DFS outperforms its 
counterpart, at medium- and coarse-
grain:

➢  ≠ WS mechanisms.

● P3D-DFS outperformed at fine-grain:
➢ DistBag-DFS overheads (?);
➢ poor intra-node speed-up.

7. J. Dinan, et al. The Unbalanced Tree-Search benchmark, 2022. https://doi.org/10.5281/zenodo.7328332.

Fig. 12: Absolute speed-up P3D-DFS vs. MPI-PUTS in 
distributed-memory experiments.

66% of ideal speed-up

https://doi.org/10.5281/zenodo.7328332


14

Conclusion & future works 

● DistBag-DFS allows high-productivity and good performance for coarser-grained applications;
→ P3D-DFS competitive to MPI+X baselines, in terms of performance and productivity-awareness.

● Investigate and benchmark DistBag-DFS low-level mechanisms;

● Extend P3D-DFS to other combinatorial optimization problems:
➢ e.g. Quadratic assignment problems, Traveling salesman problems.

● Extend experiments to larger systems;

● Develop a Chapel’s  DistributedBag-DFS package module (?).

Suggestions are welcomed!



15

Some references

[Callahan2004] D. Callahan, et al. The cascade high productivity language. In 9th International Workshop on High-
Level Parallel Programming Models and Supportive Environments, 52–60, 2004.

[Carneiro2020] T. Carneiro, et al. Towards ultra-scale Branch-and-Bound using a high-productivity language. Future 
Generation Computer Systems, 105:196-209, 2020. 

[Chakroun2013] I. Chakroun, et al. Combining multi-core and GPU computing for solving combinatorial optimization 
problems. Journal of Parallel and Distributed Computing, 73(12):1563–1577, 2013.

[Dinan2009] J. Dinan, el al. Scalable Work Stealing. In Proceedings of the Conference on High Performance 
Computing Networking, Storage and Analysis, 2009. 

[Drozdowski2011] M. Drozdowski, et al. Grid branch-and-bound for permutation flowshop. In Proceedings of the 9th 
International Conference on Parallel Processing and Applied Mathematics - Volume Part II, 21–30, Berlin, 2011.

[Gendron1994] B. Gendron, et al. Parallel branch-and-bound algorithms: Survey and synthesis. Operations Research, 
42(6):1042–1066, 1994.

[Gmys2016] J. Gmys, et al. Work stealing with private integer–vector–matrix data structure for multi-core branch-and-
bound algorithms. Concurrency and Computation: Practice and Experience, 28(18):4463–4484, 2016.

[Machado2013] R. Machado, et al. Parallel local search: Experiments with a PGAS-based programming model. 
Abs/1301.7699, 2013.



16

Some references

[Melab2018] N. Melab, et al. Multi-core versus many-core computing for many-task branch-and-bound applied to big 
optimization problems. Future Generation Computer Systems, 82:472–481, 2018.

[Mezmaz2007] M. Mezmaz, et al. A grid-enabled branch and bound algorithm for solving challenging combinatorial 
optimization problems. In 2007 IEEE International Parallel and Distributed Processing Symposium, 1–9, 2007.

[Mezmaz2014] M. Mezmaz, et al. A multi-core parallel branch-and-bound algorithm using factorial number system. In 
2014 IEEE 28th International Parallel and Distributed Processing Symposium, 1203–1212, 2014.

[Munera2013] D. Munera, et al. Experimenting with X10 for parallel constraint-based local search. Abs/1307.4641, 
2013.

[Taillard1993] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research, 
64(2):278–285, 1993.

[vanDijk2014] T. van Dijk, et al. Lace: Non-blocking Split Deque for Work-Stealing. In Euro-Par 2014: Parallel 
Processing Workshops, 206–217, 2014.

[Vu2016] T. Vu, et al. Parallel branch-and-bound in multi-core multi-CPU multi-GPU heterogeneous environments. 
Future Generation Computer Systems, 56:95–109, 2016.



Thank you for your attention.

Contact:
Guillaume HELBECQUE

guillaume.helbecque@univ-lille.fr

https://github.com/Guillaume-Helbecque

mailto:guillaume.helbecque@univ-lille.fr
https://github.com/Guillaume-Helbecque

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

