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Context

● Beginning of the exascale era1 (June 2022);

● Increasingly large (millions of cores), heterogeneous (CPU-GPU, etc.) and less and less reliable 
(Mean Time Between Failures – MTBF < 1h) systems1;

● Evolutionary school (MPI+X) vs. revolutionary school (Partitioned Global Address Space (PGAS) -
based environments).

1. Top500 ranking: https://www.top500.org/.

Fig. 2: The Frontier system at Oak 
Ridge National Laboratory.

Fig. 1: Frontier is the No. 1 system in the Top5001 

(since June 2022).

https://www.top500.org/
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Context

● Focus on exact Branch-and-Bound (B&B) optimization 
methods to solve combinatorial optimization problems:

➢ Large tree size     →  Efficient data structure;
➢ High irregularity → Efficient dynamic load balancing 

mechanism.

● Motivating example: Permutation Flowshop Scheduling 
Problem (PFSP). Search trees for very hard PFSP instances 
contain up to 1015 explored nodes.

Branch-and-Bound (B&B)

?
?

Fig. 3: Mapping B&B to hardware. Fig. 4: Solution of a PFSP instance of 4 jobs and 3 machines.
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State-of-the-art overview

● Most of existing parallel B&B algorithms are only guided by performance and benefit from problem-
specific optimizations:

➢ Multi-core CPUs: [Mezmaz2014], [Gmys2016];
➢ GPU and many-core: [Chakroun2013], [Melab2018];
➢ Clusters of GPUs: [Vu2016];
➢ Grid computing: [Mezmaz2007], [Drozdowski2011].

● Emergence of the PGAS-based Chapel productivity-aware parallel programming language 
(HPE/Cray): [Callahan2004], [Carneiro2020].

● Few studies investigate the PGAS-oriented approach in the parallel optimization setting: 
[Machado2013], [Munera2013].

Shared-memory  Distributed-memory    PGAS

Fig. 5: Parallel programming models.
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Parallel design

● Asynchronous parallel tree exploration model:
➢ Unpredictable communications;
➢ Unbalanced work units → Work Stealing (WS).

● Depth-First Search (DFS):
➢ Memory Efficiency;
➢ Stack (LIFO).

Fig. 6: Illustration of the parallel tree exploration model.
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Parallel design

Collegial multi-pool [Gendron1994].

At the process level
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Parallel implementation

DistBag2 (“distributed bag”): parallel-safe distributed multi-pool implementation;

→ not suitable for DFS.

2. The Chapel’s DistributedBag module: https://chapel-lang.org/docs/modules/packages/DistributedBag.html.

Fig. 7: The DistBag data structure.

https://chapel-lang.org/docs/modules/packages/DistributedBag.html
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Revisited into DistBag-DFS3:
● Work pools → non-blocking split deques [vanDijk2014], [Dinan2009];

● New WS mechanism:
➢ Bi-level (locality-aware);
➢ Random victim selection;
➢ Steal half.

Parallel implementation

Fig. 8: Simplified view of a non-blocking split deque.

3. The DistBag-DFS data structure: https://github.com/Guillaume-Helbecque/P3D-DFS/DistBag-DFS.

https://github.com/Guillaume-Helbecque/P3D-DFS/tree/main/DistBag-DFS
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Productivity-awareness

Sequential vs. distributed parallel4:

→ Few more lines of code are required;
→ Generic approach: e.g. PFSP, Unbalanced Tree-Search benchmark (UTS), N-Queens.

4. G. Helbecque, el al. Productivity- and Performance-aware Parallel Distributed Depth-First Search (P3D-DFS), 2023.    
    https://github.com/Guillaume-Helbecque/P3D-DFS.

https://github.com/Guillaume-Helbecque/P3D-DFS
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Experimental protocol

5. ULHPC supercomputers - Aion system: https://hpc-docs.uni.lu/systems/aion/.

● Hardware: ULHPC facilities5 
2x AMD Epyc ROME 7H12 @ 2.6 GHz (64 cores), 256 GB RAM;  
Fast InfiniBand HDR100 network.

● Applications: 
➢ PFSP → Taillard’s instances (20 jobs x 20 machines) [Taillard1993];
➢ UTS   → synthetic trees.

● Experiments:
➢ Memory consumption of DistBag vs. DistBag-DFS;
➢ P3D-DFS vs. MPI+X best known counterparts (≠ approaches). Fig. 9: The Aion system.

https://hpc-docs.uni.lu/systems/aion/
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DistBag vs. DistBag-DFS

Fig. 10: Bag size according to the processing time
when solving PFSP instances in DFS.

≈ 11GB

● DistBag cannot ensure DFS 
exploration order

→ poor memory efficiency; 

● Memory consumption remains 
bounded using DistBag-DFS.
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Experimental results at the inter-node level

Fig. 11: Absolute speed-up P3D-DFS vs. MPI-PBB in 
distributed-memory experiments.

6. J. Gmys. Parallel Branch-and-Bound for permutation-based optimization, 2023.                                                         
    https://doi.org/10.5281/zenodo.7674826.

● P3D-DFS vs. MPI-PBB6 (MPI+pthread);

● P3D-DFS competitive against its 
counterpart:

➢ ≠ WS mechanisms.

● MPI-PBB performs better solving the 
largest instance with the finest 
granularity:

➢ DistBag-DFS overheads (?).

94% of ideal speed-up

https://doi.org/10.5281/zenodo.7674826


13

Experimental results at the inter-node level

● P3D-DFS vs. MPI-PUTS7 (MPI+MPI);

● P3D-DFS outperforms its 
counterpart, at medium- and coarse-
grain:

➢  ≠ WS mechanisms.

● P3D-DFS outperformed at fine-grain:
➢ DistBag-DFS overheads (?);
➢ poor intra-node speed-up.

7. J. Dinan, et al. The Unbalanced Tree-Search benchmark, 2022. https://doi.org/10.5281/zenodo.7328332.

Fig. 12: Absolute speed-up P3D-DFS vs. MPI-PUTS in 
distributed-memory experiments.

66% of ideal speed-up

https://doi.org/10.5281/zenodo.7328332
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Conclusion & future works 

● DistBag-DFS allows high-productivity and good performance for coarser-grained applications;
→ P3D-DFS competitive to MPI+X baselines, in terms of performance and productivity-awareness.

● Investigate and benchmark DistBag-DFS low-level mechanisms;

● Extend P3D-DFS to other combinatorial optimization problems:
➢ e.g. Quadratic assignment problems, Traveling salesman problems.

● Extend experiments to larger systems;

● Develop a Chapel’s  DistributedBag-DFS package module (?).

Suggestions are welcomed!
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Thank you for your attention.

Contact:
Guillaume HELBECQUE

guillaume.helbecque@univ-lille.fr

https://github.com/Guillaume-Helbecque

mailto:guillaume.helbecque@univ-lille.fr
https://github.com/Guillaume-Helbecque
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