Too Big to Fail: Massive Scale Linear Algebra with Chapel
and Arkouda

Christopher Hollis
U.S. Department of Defense

ABSTRACT

This presentation details the development of a linear
algebra extension for Arkouda[1] (a NumPy-like Python
application that utilizes Chapel for a backend server). This
interface, dubbed AkSparse, allows for the creation and
manipulation of sparse matrices at large scale with features
designed to be familiar to users of SciPy’s existing sparse
array package[2]. This includes a sparse general
matrix-matrix multiplication (SpGEMM) implemented with a
novel algorithm leveraging the strengths of both Arkouda
and Chapel. AkSparse allows users to integrate linear
algebraic techniques into existing exploratory data analysis
(EDA) workflows on datasets at a scale not previously
possible.

1 INTRODUCTION

Effective EDA requires open-ended and frictionless
interaction with data, but as datasets grow larger the
performance of the necessary HPC tools begins to hinder
the user’s ability to easily investigate. Arkouda attempts to
remedy this by providing a NumPy-like Python interface that
prioritizes compatibility with existing data science workflows,
while obscuring the underlying computations as they are
handled by a Chapel server.

Linear algebra involving large-scale datasets has been
an area of significant interest in the Arkouda community, as
the application is particularly suited for interaction with data
so large that it requires tools and techniques capable of
running on multiple compute locales. The algorithms utilized
by AkSparse takes advantage of Chapel’s built-in support
for multi-locale and multithreaded execution. AkSparse
minimizes the communication costs inherent with the
distributed-scale computation. The tool's performance on
large-scale datasets will be included, highlighting the size of
matrices that are now possible for use in EDA.

2 ALGORITHM

Large scale distributed SpGEMM faces many challenges,
primarily involving the amount of memory needed to store the
resulting matrix and the communication cost required to perform
the multiplication. This becomes even more of an issue when the
input matrices are highly unstructured, such as the graph
Laplacian generated from a large network graph. AkSparse
addresses the communication cost by leveraging the highly
optimized sorting and groupby functionality provided by
Arkouda. The issue of scale and available memory are handled by
partitioning the input matrices, allowing for the SpGEMM
computation to be broken into batches. To make this possible,
AkSparse uses an “outer product” formulation of SpGEMM
whose details will be discussed during the presentation.

3 CONCLUSION

This talk serves as an introduction to AkSparse and the
problems it was designed to solve. The tool remains a
work-in-progress with a number of plans for further
optimization and support for additional linear algebra
functionality.

REFERENCES

[1] GitHub - Bears-R-Us/arkouda: Arkouda (apkouda): Interactive Data
Analytics at Supercomputing Scale -- a Python API powered by Chapel
(https://github.com/Bears-R-Us/arkouda)

[2] Sparse matrices (scipy.sparse) — SciPy v1.10.1 Manual
(https://docs.scipy.org/doc/scipy/reference/sparse.html)



