
Parallel implementation in Chapel for the numerical solution of
the 3D Poisson problem

Anna Caroline Felix Santos de Jesus
carolinefelix@usp.br

Instituto de Ciências Matemáticas e de Computação,
University of São Paulo

São Carlos, Brazil

Willian Carlos Lesinhovski
wlesin@yahoo.com.br

Department of Environmental Engineering, Federal
University of Paraná

Curitiba, Brazil

Livia S. Freire
liviafreire@usp.br

Instituto de Ciências Matemáticas e de Computação,
University of São Paulo

São Carlos, Brazil

Nelson Luis Dias
nldias@ufpr.br

Department of Environmental Engineering, Federal
University of Paraná

Curitiba, Brazil

ABSTRACT
In this study, we present a parallel implementation of the numerical
Poisson equation with domain decomposition in three directions
using the Chapel programming language. Our goal is to study the
potential of Chapel as an easy-to-implement alternative to a code
originally developed in Fortran+MPI. The numerical experiments
were performed on the cluster of the Instituto de Ciências Matemáti-
cas e de Computação of the University of São Paulo, on a grid 1303
points, for a single node only. The performance of the Chapel ver-
sion was 2-15% faster than the Fortran+MPI version, when up to
32 threads were used.

KEYWORDS
Chapel, Fortran+MPI, Poisson equation, domain decomposition

1 INTRODUCTION
The 3D Poisson equation has many relevant applications in science
and engineering, including the modeling of heat transfer in solids
with steady state properties and the simulation of incompressible
flow problems. In the latter case, by taking the divergence of the
momentum equation (Navier-Stokes Equation) and using the in-
compressibility constraint, one obtains a Poisson equation for the
pressure field in the fluid. The general form of the Poisson equation
is given by

∇2 𝑓 = 𝑇, (1)
with ∇2 representing the Laplacian operator, 𝑓 representing a scalar
field and 𝑇 its source term. In this study, we test the use of the
Chapel programming language in solving the parallel 3D Poisson
equation by comparing it with a Fortran+MPI code.

2 METHODS
In order to verify and test the efficiency of the numerical codes,
we used the method of the manufactured solution (MMS) [3], by
providing an analytical model 𝑇 = −3 sin(𝑥) cos(𝑦) sin(𝑧) which
results in the analytical solution for 𝑓 = sin(𝑥) cos(𝑦) sin(𝑧) on
Ω = [0, 1]3. The exact values of 𝑓 are imposed on the cells adjacent
to the domain boundary in all three directions.

The Poisson equation was discretized using the second-order
centered Finite Difference Method (FDM) [2] resulting in a system

of linear algebraic equations that were solved iteratively using the
successive over-relaxation (SOR) method

𝑓 𝑛+1 = (1 − 𝜔) 𝑓 𝑛 + 𝜔𝑓 ∗, (2)
where 𝑓 ∗ is the solution of the discretized equations and 𝑛 is the
iteration step. In this work, 𝜔 = 1.3 was used.

Considering the tridimensional domain uniformly spaced, we
haveΩ𝑖 =Δ𝑥Δ𝑦Δ𝑧 = 1

𝑖𝑚𝑎𝑥 ×
1

𝑗𝑚𝑎𝑥 ×
1

𝑘𝑚𝑎𝑥
, whereΩ𝑖 is a subdomain

of the computational mesh of Ω = [0, 1]3, and 𝑖𝑚𝑎𝑥 × 𝑗𝑚𝑎𝑥 ×𝑘𝑚𝑎𝑥

are the number of grids.
The numerical implementation in Chapel is given by

1 config const imax, jmax, kmax : int;

2 const Lx = 1.0, Ly = 1.0, Lz = 1.0 : real;

3 const dx = Lx/imax, dy = Ly/jmax, dz = Lz/kmax : real;

4 const w = 1.30 : real;

5 const dx2 = dx*dx, dy2 = dy*dy, dz2 = dz*dz: real;

6 const beta1 = dx2/dy2 : real;

7 const beta2 = dx2/dz2 : real;

8 const w1 = (1.0 - w) : real;

9 const beta3 = 2.0*(beta1 + beta2 + 1.0) : real;

10 const tol = 1E-8: real;

11 var f, tf, residuo, errof : [1..imax, 1..jmax, 1..kmax] real;

Listing 1: Setup problem

The source term was implemented as
1 for i in 1..imax do{

2 x = (i-0.5)*dx;

3 for j in 1..jmax do{

4 y = (j-0.5)*dy;

5 for k in 1..kmax do{

6 z = (k-0.5)*dz;

7 tf(i,j,k) = tf_exact(x,y,z);

8 }

9 }

10 }

Listing 2: Implementation of the source term

with
1 proc tf_exact(x: real, y: real, z: real){

2 var tff : real;

3 tff = -3.0*sin(x)*cos(y)*sin(z);

4 return tff;

5 }

Listing 3: Source term

Jesus et al.

Imposing the known values of 𝑓 on the cells adjacent to the bound-
ary, for example, for the 𝑥-direction we have
1 // x - direction

2 for j in 1..jmax do{

3 y = (j-0.5)*dy;

4 for k in 1..kmax do{

5 z = (k-0.5)*dz;

6

7 x = 0.5*dx;

8 f(1,j,k) = f_exact(x,y,z);

9

10 x = (imax-0.5)*dx;

11 f(imax,j,k) = f_exact(x,y,z);

12 }

13 }

14 }

Listing 4: Imposing 𝑓 in 𝑥-direction

where
1 proc tf_exact(x: real, y: real, z: real){

2 var tff : real;

3 tff = sin(x)*cos(y)*sin(z);

4 return tff;

5 }

Listing 5: Analytical solution

For the other directions the implementation is analogous.
The methodology used consists of subdividing the computa-

tional domain into subdomains, where each subdomain is resolved
by a process. For each process, the calculation for the iterative
SOR scheme is performed, requiring communication with the sur-
rounding processes. In MPI, this communication has to be imple-
mented directly. In Chapel, to imitate the domain decomposition
implemented in the Fortran+MPI code, we provide the following
alternative using data parallelism on a single locale:
1 config const npx, npy, npz: int;

2 const ptsx = (imax-2)/npx, ptsy = (jmax-2)/npy,

3 ptsz = (kmax-2)/npz : int;

Listing 6: Domain Decomposition - alternative Chapel

In this work, we paid particular attention to the fact that intent
ref should be used in procedure returns, because this directly
impacts the performance of the Chapel for procedures within loops,
as shown in Listing 7.
1 proc sor_method(ref f: [] real, ref tf: [] real) ref {

2

3 coforall (ii,jj,kk) in {2..imax-1, 2..jmax-1, 2..kmax-1}

4 by (ptsx, ptsy, ptsz){

5 for i in ii..ii + ptsx-1 do{

6 for j in jj..jj + ptsy-1 do{

7 for k in kk..kk + ptsz-1 do{

8 f(i,j,k) = w1*f(i,j,k) +

9 w * (-dx2*tf(i,j,k) + f(i-1,j,k) + f(i+1,j,k)

10 + beta1*(f(i,j-1,k) + f(i,j+1,k))

11 + beta2*(f(i,j,k-1) + f(i,j,k+1)))/ beta3 ;

12 }

13 }

14 }

15 }

16 return f;

17 }

Listing 7: Chapel coforall task-parallel construct

The range {2..imax-1, 2..jmax-1, 2..kmax-1} represents
the computational domain, excluding edges, and ptsx, ptsy and
ptsz represents the number of unknowns to be calculated in the
𝑥 ,𝑦 and 𝑧 directions respectively. For example, if ptsx=ptsy=ptsz
=64 then 8 tasks will be created, since
1 {2..imax-1, 2..jmax-1, 2..kmax-1} by (ptsx, ptsy, ptsz)

2 // 64 x 64 x 64 : decomposition into 2x2x2 blocks => 8 tasks

Listing 8: Domain decompostion using coforall loops

Thus, npx=npy=npz=2 implies that NP=8.
It was observed that, because in Fortran the filling of the 3D

matrix in memory is performed along the columns (column-major)
whereas in Chapel the elements are aligned along the rows (row-
major), the different combinations of domain subdivisions influence
the performance comparison between the languages. Therefore,
the best combinations of domain decomposition that favor each of
the languages was chosen for each number of threads evaluated.
Furthermore, to ensure better performance of the implemented
versions, the chapel code was compiled with the --fast flag and the
Fortran + MPI code with the -O3 optimization flag. Table 1 presents
the tools/ libraries and optimization flags used for compiling the
programs.

Table 1: Summary of the tools/libraries and optimization
flags used for compilation and execution

Tools/libraries Version
C compiler gcc 12.2.1

Chapel 1.30.0
Chapel optimization flag --fast

C compiler gcc 4.9.2
mpich 3.1.4

Fortran optimization flag -O3

The numerical experiment was performed on the Euler Cluster
of the Instituto de Ciências Matemáticas e de Computação of the Uni-
versity of São Paulo (whose configuration is shown in Tab. 2) with
28 cores with hyper-threading (for a total of 56 threads). For more
details, see https://euler.cemeai.icmc.usp.br/documentacao/sistema.
In particular, for Chapel 1.30.0, the environment variations used
for single node are organized in Tab. 3.

Table 2: Machine and Operating System.

Machine Cluster Euler
Memory 128 GB DDR3 1866MHz

Processador Intel Xeon E5-2680v4 de 2.4 GHz
Operating System CentOS Linux release 7.2.1511

Because this machine has 28 cores with hyper-threading, wemea-
sured the execution time with NP = 2,4,8,16 and 32 threads by
changing the setting of the CHPL_RT_NUM_ THREADS_PER_LOCALE
environment variable. For the Fortran+MPI code, the number of
processes was controlled using the following command line instruc-
tion,

mpiexec -np $NP ./exec

where NP is the desired number of processes.

https://euler.cemeai.icmc.usp.br/documentacao/sistema

Parallel implementation in Chapel for the numerical solution of the 3D Poisson problem

Table 3: Summary of the environment configuration for
single-locale execution and compilation.

Variable Value
CHPL_RT_NUM_THREADS_PER_LOCALE NP

CHPL_TASKS qthreads
CHPL_TARGET_CPU native

CHPL_HOST_PLATFORM linux64
CHPL_LLVM none
CHPL_COMM none

3 RESULTS
We visualize the numerical solution as shown in Fig. 1 with the
aid of Paraview software [1]. The best combinations of domain
decomposition that favor each of the languages are shown in Tab. 4.
Each code was run 3 times and the average times for each NP are
shown in Fig. 2.

Figure 1: Numerical Solution.

Table 4: Result of the best domain decomposition obtained
for Chapel and Fortran+MPI.

Chapel Fortran
Threads npx npy npz npx npy npz

2 2 1 1 1 1 2
4 1 4 1 1 1 4
8 8 1 1 1 1 8
16 16 1 1 2 2 4
32 8 4 1 2 4 4

More precisely, when we divide the Fortran+MPI code execution
time by the Chapel code execution time, we observe that Chapel’s
performance is better than Fortran+MPI for all cases tested. The
best result was for 8 threads, when the Chapel version was 15%

Figure 2: Runtime (in seconds) of the two codes as a function
of the number of threads.

faster than the Fortran+MPI version. We explicitly show the values
of the percentages in Tab. 5.

Table 5: Chapel’s performance compared to Fortran + MPI

Threads 1 2 4 8 16 32
CPU time (%) 102.2 107.6 109.1 115.9 109.8 109.2

The speedup is calculated as 𝑆 (𝑁𝑃) = 𝑇1/𝑇𝑁𝑃 , where 𝑇1 is the
corresponding sequential time and𝑇𝑁𝑃 corresponds to the runtime
using 𝑁𝑃 threads or process. In Fig. 3, we see that both implemen-
tations have the a similar speedup trend.

Figure 3: Speedup in linear scale. The dashed line corresponds
to an ideal speedup.

4 CONCLUSION
In this paper, we investigate the potential of Chapel as an alternative
to the conventional code implementation in Fortran+MPI for the 3D
Poisson problem. Chapel provides a cleaner and easier to program
code, and we found that Chapel’s implementation performs better

Jesus et al.

than Fortran+MPI’s when return using ref intents in procedures (or
subroutines). In addition, the chapel code provides an approximately
50% reduction in implemented lines compared to the Fortran+MPI
code. Future work should extend this study to more nodes (multi
locales in Chapel).

5 ACKNOWLEDGMENTS
We thank Leonardo Martinussi, Engin Kayralki, Damian McGuckin,
Jeremiah Corrado, Vass Litvinov and the all Chapel community
your great support!. This study was funded by the Coordination
for the Improvement of Higher Education Personnel (CAPES grant
PROEX 88887.671252/2022-00) and the São Paulo Research Founda-
tion (FAPESP grant Nº. 2018/24284-1). The computational resources

of the Center for Mathematical Sciences Applied to Industry (Ce-
MEAI) is funded by FAPESP (grant 2013/07375-0)

REFERENCES
[1] James Ahrens, Berk Geveci, and Charles Law. 2005. Visualization Handbook.

Elsevier Inc., Burlington, MA, USA, Chapter ParaView: An End-User Tool
for Large Data Visualization, 717–731. https://www.sciencedirect.com/book/
9780123875822/visualization-handbook

[2] R.J. LeVeque. 2007. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. Society for Industrial and
Applied Mathematics.

[3] Patrick J. Roache. 2001. Code Verification by the Method of Manufactured Solu-
tions. Journal of Fluids Engineering 124, 1 (11 2001), 4–10. https://doi.org/10.1115/
1.1436090 arXiv:https://asmedigitalcollection.asme.org/fluidsengineering/article-
pdf/124/1/4/5901562/4_1.pdf

https://www.sciencedirect.com/book/9780123875822/visualization-handbook
https://www.sciencedirect.com/book/9780123875822/visualization-handbook
https://doi.org/10.1115/1.1436090
https://doi.org/10.1115/1.1436090
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/124/1/4/5901562/4_1.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/124/1/4/5901562/4_1.pdf

	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Conclusion
	5 Acknowledgments
	References

