
Recent GPU Programming Improvements in Chapel
Engin Kayraklioglu

engin@hpe.com
Hewlett Packard Enterprise

Andy Stone
andy.stone@hpe.com

Hewlett Packard Enterprise

Daniel Fedorin
daniel.fedorin@hpe.com

Hewlett Packard Enterprise

ABSTRACT
Chapel’s emerging native GPU programming support has improved
considerably in the last year. In this talk, we will highlight some of
the improvements and discuss our next steps.

1 INTRODUCTION
GPUs continue to gain popularity and importance in high-
performance computing. In November 2005, none of the compute
power of the supercomputers in TOP500 [1] came from accelerators;
whereas in 2022, 60% of it did. Uses of GPUs are more prevalent
near the top of the most recent list, where 7 out of top 10 systems
are equipped with GPUs.

In this landscape, providing native GPU programming support
is one of the key priorities of the Chapel team at Hewlett Packard
Enterprise. We have been working towards that goal for some time
with increased intensity over the last couple of years. This talk
will focus on recent improvements in portability, performance and
features. We will also discuss near- and long-term goals. Whereas
the talk itself will give a quick recap on how to program GPUs
natively in Chapel, the details are omitted here for brevity. The
reader is encouraged to peruse our submission in CHIUW 2022 [2],
notes from the last year [3, 4], and the GPU technote [5] for learning
more about GPU programming with Chapel.

2 RECENT UPDATES
In the talk we will focus on the following updates as we believe they
are the most important for the users. However, we are planning to
enumerate other noteworthy improvements.

2.1 Portability
2.1.1 AMD Support. Until Chapel 1.30, only NVIDIA GPUs could
be targeted. Version 1.30 features our initial support for targeting
AMD GPUs. This support is built on ROCm, where the runtime
GPU layer is implemented in HIP. The compiler implementation
for GPU support is mostly common between NVIDIA and AMD
targets, differing only in the final steps of generating the binary.
There are two known limitations specific to the AMD target: (1) it
can only be used in single-locale builds, (2) a subset of 64-bit math
functions are not supported.

2.1.2 The Simulated GPU layer. We have been working on a new
simulated GPU layer. This is a development/debugging-oriented
layer that allows the GPU locale model to be used in systems with-
out GPUs. With this layer, programmers do not need to run on
systems with GPUs to use features like assertOnGpu to understand
whether their loops will be transformed into kernel launches. Fur-
ther diagnostic features from the GpuDiagnostics module can be
used to count kernel launches or verbosely report when a launch oc-
curs. As of today, this is still a work-in-progress, but we are aiming
to include it in version 1.31.

2.1.3 Next Steps. In the near-term, we are focusing on extending
AMD support to enable multi-locale execution. We target achieving
feature parity with NVIDIA within a few releases. We are also
planning to target Intel GPUs as they become more available.

2.2 Performance
We have started looking into the performance of our native GPU
programming support. In this section of the talk, we will talk about
two of the key performance optimizations that are in Chapel 1.30.

2.2.1 Kernel Launch Improvements. In the early prototypes, our
runtime would to load the GPU binary every time a kernel launch
occurs. This resulted in easier implementation. However, it was
also a source of considerable overhead per kernel launch. This
was especially noticeable in short-running kernels. We have fixed
this performance issue by eagerly loading the GPU binary during
application startup, which resulted in around 300x faster kernel
launch times. See the "1.30 Prerelease" curve in Figure 1 for the
performance improvement in HPCC Stream with varying vector
sizes.

2.2.2 Kernel Execution Improvements. We have also made progress
in eliminating costs coming from kernel execution. Chapel arrays
have metadata that typically needs to be accessed/used per access.
Execution time overheads for that are typically not noticeable on
CPUs. However, we’ve observed that not to be the case for GPUs,
potentially due to limited cache per thread. Our initial step to elim-
inate that overhead is to leverage the existing loop-invariant code
motion (LICM) optimization in the Chapel compiler. Previously,
GPU kernels were generated before this pass, which precluded GPU
kernels from benefiting from the optimization. With some modifica-
tions to the GPU transformation pass in the compiler, we were able
to move it after LICM. This resulted in performance improvements
both in benchmarks like HPCC Stream Triad, and user applications
like ChOp [7]. See the "1.30" curve in Figure 1 for the performance
improvement caused by this optimization.

2.2.3 Next Steps. We are aware of some overheads
on CPU execution with CHPL_LOCALE_MODEL=gpu,
which are even more pronounced in the non-default
CHPL_GPU_MEM_STRATEGY=array_on_device mode. This is a
mode in which the array data is allocated strictly on device
global memory rather than managed memory. As such, the
array_on_device mode improves performance of data copies
between device and host significantly. We are planning to make
this the default mode, but first, we will focus on resolving the CPU
performance issues caused by it.

Furthermore, in the near term, we want to (1) investigate abstract
syntax tree (AST) specialization early in the compiler to make some
static optimizations for the GPU code paths, and (2) improve LICM
to remove array metadata from GPU kernels in more cases.



Engin Kayraklioglu, Andy Stone, and Daniel Fedorin

32 64 128
Number of Elements (M)

0

100

200

Th
ro
ug

hp
ut

(G
B
/s
)

B
et
te
r

Stream (using NVIDIA RTX A2000)

C+CUDA
1.30 (1.29+Eager Load+LICM)
1.30 Prerelease (1.29+Eager Load)
1.29

Figure 1: STREAM Performance Progress with Optimizations

2.3 Features
We recommend browsing the GPU module documentation [6] to
learn more about the current API supporting GPU programming.
This API has been improved significantly in the last year, which
we will summarize during the talk. Additionally, we will highlight
our nascent profiler support.

2.3.1 Initial Support for Profilers with NVIDIA GPUs. Profilers are
especially important in the GPU performance analysis workflow,
where timers and writeln-based introspection are more cumber-
some to use than with CPU performance analysis. In earlier ver-
sions, we have noticed that while you can use NVIDIA’s Nsight
Compute profiler to profile kernel execution performance, enabling
line number generation thwarted performance optimizations per-
formed by the PTX assembler. In version 1.30, we have added a new
flag, –gpu-ptxas-enforce-optimization, which ensures that the
generated binary is optimized even with the -g flag that adds line
number information in the emitted PTX. We expect to overhaul
how -g works with the LLVM backend, and to deprecate this flag
in the long term.

2.3.2 Next Steps. We are actively designing and prototyping new
features for forall and foreach. We aim for these features to
replace some of the API in the GPU module (e.g., standalone func-
tions to set the kernel block size, create block-shared arrays) with
portable means that can be used across vendors and across systems
with and without GPUs. The current API already provides the for-
mer but not the latter. This is one of the major design efforts of the
GPU team and expected to span several releases.

REFERENCES
[1] https://www.top500.org/
[2] https://chapel-lang.org/CHIUW/2022/Kayraklioglu.pdf
[3] https://chapel-lang.org/releaseNotes/1.27-1.28/04-ongoing-gpus.pdf
[4] https://chapel-lang.org/releaseNotes/1.29-1.30/04-gpus.pdf
[5] https://chapel-lang.org/docs/main/technotes/gpu.html
[6] https://chapel-lang.org/docs/main/modules/standard/GPU.html
[7] Tiago Carneiro, Jan Gmys, Nouredine Melab, Daniel Tuyttens, Towards ultra-

scale Branch-and-Bound using a high-productivity language, Future Genera-
tion Computer Systems, Volume 105, 2020, Pages 196-209, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2019.11.011.


	Abstract
	1 Introduction
	2 Recent Updates
	2.1 Portability
	2.2 Performance
	2.3 Features

	References

