
RECENT GPU PROGRAMMING IMPROVEMENTS
IN CHAPEL

Engin Kayraklioglu, Andy Stone, Daniel Fedorin
CHIUW 2023 - June 2nd, 2023

GPU PROGRAMMING IN CHAPEL

2

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

3

CPU Core

Memory

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

4

CPU Core

Memory

GPU Core

5

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

Execution/allocation
moves to the sublocale

A

x

var x = 10;

on here.gpus[0] {
var A = [1, 2, 3, 4, 5, ...];
A += 1;

}

writeln(x);

GPU Core MemoryCPU Core

6

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

on here.gpus[0] {
var A = [1, 2, 3, 4, 5, ...];
A += 1;

}

writeln(x);

A

GPU Core MemoryCPU Core

7

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

coforall g in here.gpus do on g {
var A = [1, 2, 3, 4, 5, ...];
A += 1;

}

writeln(x);

A

A

coforall across local GPUs

GPU Core MemoryCPU Core

8

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;
coforall l in locales do on l {

coforall g in here.gpus do on g {
var A = [1, 2, 3, 4, 5, ...];
A += 1;

}

}
writeln(x);

A

A

Locale 1

GPU 0

GPU 1

A

A

coforall across local GPUs

inner
coforall

GPU Core MemoryCPU Core

var x = 10;
coforall l in locales do on l {
cobegin {
coforall g in here.gpus do on g {
var A = [1, 2, 3, 4, 5, ...];
A += 1;

}
{
var A = [1, 2, 3, 4, 5, ...];
A += 1;

}
}

}
writeln(x);

9

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

GPU Core Memory

A

A

Locale 1

GPU 0

GPU 1

A

A

A A

CPU Core

parallel statements
with cobegin

outer coforall

inner
coforall

RECENT IMPROVEMENTS

10

• Fundamentals working

11

FEATURES

CHIUW '22 CHIUW '23 Future

• GPU Module
• assertOnGpu
• setBlockSize
• createSharedArray
• atomic operations

• GpuDiagnostics Module
• Count number of launches
• Verbose kernel launches

• Initial profiler support

• Portable features for
forall/foreach

• foreach intents

• Has basic introspection/debugging support
• assertOnGpu

– Compilation fails if the loop is not GPU-eligible, execution fails if it is not run on a GPU sublocale
• gpuWrite/gpuWriteln
• gpuClock/gpuClocksPerSec

• A new standard module to support fundamental GPU operations
• setBlockSize
• createSharedArray
• syncThreads

Next steps:
• We expect most of the functionality here to be implemented in existing Chapel features

• i.e., writeln should replace gpuWriteln
• Designing new features for foreach/forall loops for fundamental GPU operations in a portable way

• i.e., syncThreads can be implemented with some form of a barrier
• i.e., the user should be able to query the GPU thread ID or Chapel task ID from inside a forall loop

12

GPU MODULE

• Basic diagnostics support modeled after CommDiagnostics module
• Currently only supports counting/reporting kernel launches

startVerboseGpu(); // print a message out everytime a kernel is launched
startGpuDiagnostics(); // count kernel launches
on here.gpus[0] {

foreach i in 1..10 do // gpu-eligible operations
}
stopGpuDiagnostics();
stopVerboseGpu();
writeln(getGpuDiagnostics());

13

GPU DIAGNOSTICS MODULE

Output:

0 (gpu 0): foo.chpl:4: kernel launch (block size: 512x1x1) # via startVerboseGpu()
(kernel_launch: 1) # via getGpuDiagnostics()

14

PROFILER SUPPORT

Background:
• Debugging and profiling GPU kernels are typically more difficult than CPU applications

– I/O support is typically poor, execution model is less intuitive, esoteric challenges
• NVIDIA has numerous profilers, where NSight Compute is used for profiling kernel performance

– While using profilers for Chapel in general is not very straightforward, focusing on kernels is easier
• Out-of-the-box: NSight Compute was able to show line-by-line hardware counters when '-g' was used

– However, '--fast -g' thwarted assembler optimizations à reduced kernel performance à less valuable profiling
This Effort:

• Added the '--gpu-ptxas-enforce-optimizations' flag to ensure that assembler optimizations are enabled
Impact:

• Significant help while trying to understand performance of compiler-generated kernels
– Kernel performance is virtually unaffected
– Profiler shows line-by-line information accurately

• Can compare performance behavior of a reference version against the Chapel version

• Monolithic runtime
• CUDA Driver API

wrapper

15

PORTABILITY

CHIUW '22 CHIUW '23 Future

• Modular runtime
• AMD support
• "cpu-as-device" mode

• Intel support

Application • AMD GPUs are now supported
• 1.30: single-locale
• 1.31 pre-release: multilocale

• Features/correctness
• Mostly on-par with NVIDIA
• Some 64-bit math functions aren't

supported

• Performance
• Only initial studies so far
• (more on this later)

16

AMD SUPPORT

GPU Layer
(interface to app/compiler)

CUDA
Driver

API

Modules

Compiled binary

D
ep

en
de

nc
ie

s
Ch

ap
el

NVIDIA
Interface

AMD
Interface

HIP
API

Runtime

Application • Supports GPU locale model w/o GPUs
• GPU functionality is diverted to CPU

• Loops are outlined for kernel generation
• however, they are not compiled/launched
• loop always runs for equivalent correctness

• Use-cases
• assertOnGpu to confirm GPU offload
• GpuDiagnostics to count/report "launches"

17

CPU-AS-DEVICE SUPPORT

GPU Layer
(interface to app/compiler)

CUDA
Driver

API

Modules

Compiled binary

D
ep

en
de

nc
ie

s
Ch

ap
el

NVIDIA
Interface

AMD
Interface

HIP
API

Runtime
CPU

Interface

Application • Intel GPU support is the next target
• Modular runtime should help
• Compilation is a bigger question

– GPU transformations should be the same
across vendors

– LLVM generates the code for us;
– but no Intel GPU target, yet
– Intel's LLVM fork can target Intel GPUs
– Potential solution: rely on system LLVM that's

Intel-GPU-enabled

• Implementation has not started, yet

18

FUTURE WORK: INTEL GPU SUPPORT

GPU Layer
(interface to app/compiler)

CUDA
Driver

API

Modules

Compiled binary

D
ep

en
de

nc
ie

s
Ch

ap
el

NVIDIA
Interface

AMD
Interface

HIP
API

Runtime
CPU

Interface
Intel

Interface

oneAPI
Level

Zero (?)

• Initial studies

19

PERFORMANCE

CHIUW '22 CHIUW '23 Future

• Significant performance improvements
• Faster kernel launch
• Faster kernel execution

• "array-on-device" mode
• New benchmarks
• Initial AMD experiments

• "array-on-device"
• Compiler optimizations

• Eager binary loading
• GPU binary is loaded at application launch
• ~300x faster kernel launch times

• Loop-invariant code motion before GPU pass
• Loops are optimized before turning into kernels
• Faster kernel execution

• Application-level optimizations with ChOp*

20

GENERAL PERFORMANCE IMPROVEMENTS
6.42 milliseconds

0.02 milliseconds

N Interop
(s)

Native
(s) Off by

15 0.30 0.36 19%

16 1.79 2.06 15%

17 12.47 14.76 18%

18 94.94 110.98 17%

N-Queens Performance with ChOp
(1x NVIDIA P100)

*Tiago Carneiro , Nouredine Melab, Jan Gmys, Guillaume Helbecque. et al. — INRIA Lille, France; Imec, Belgium; University of Mons, Belgium; et al.

21

WORK IN PROGRESS: AMD PERFORMANCE

HPCC-Stream: Similar to NVIDIA
• Maybe a little lower with smaller data

• potentially due to higher kernel launch costs

ChOp: Performance drops with larger data
• Investigation is pending

N Interop
(s)

Native
(s) Off by

15 0.40 0.55 36%

16 1.14 2.18 91%

17 6.36 13.28 209%

18 47.04 115.51 246%

N-Queens Performance with ChOp
(1x AMD MI100)

22

FUTURE WORK

Unified
Memory

Array on
Device

0.12 18.16

0.038 0.018

Unified
Memory

Array on
Device

0.25 0.033

0.14 0.034

var CpuArr: [1..n] int;

on here.gpus[0] {

var GpuArr: [1..n] int;

GpuArr = CpuArr;

CpuArr = GpuArr;
}

Unified
Memory

Array on
Device

metadata host host

data host host (registered)

metadata managed managed

data managed device

How memory is allocatedTime (s)
(RTX A2000)

Faster data movement

Array initialization on CPU
is the current focus

Faster initialization on GPU

Status so far:
• Can target NVIDIA and AMD GPUs in single- and multilocale
• The performance has been significantly improved, but there's more room
• Fundamental GPU operations are supported via a standard module
• Diagnostics and introspection tools can help performance analysis and optimization

Next steps:
• Target Intel GPUs
• More performance improvements
• New features to support portable programming between GPU- and vector-based execution

23

SUMMARY

THANK YOU

24

engin@hpe.com

