Y

Hewlett Packard
Enterprise

RECENT GPU PROGRAMMING IMPROVEMENTS
IN CHAPEL

Engin Kayraklioglu, Andy Stone, Daniel Fedorin
CHIUW 2023 - June 29, 2023

GPU PROGRAMMING IN CHAPEL

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

Locale O

_mm

Locale 1

b

Locale 2

B

CPU Core
. Memory

Locale 3

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

« complicating matters, compute nodes now often have GPUs with their own processors and memory
« we represent these as sub-locales in Chapel

Locale O Locale 1 Locale 2 Locale 3

GPUO GPU1 GPUO GPU1 GPUO GPU1 GPUO GPU 1

GPU2 GPU3 GPU 2 GPU3 GPU 2 GPU 3 GPU 2 GPU3

GPU Core
CPU Core

. Memory

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

Execution/allocation
moves to the sublocale

GPU Core . Memory

Locale O

avar x = 10;

a on here.gpus[0]

Q var A =
Q A += 1;
}

Q writeln (x) ;

[1,

2y

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

GPU Core . Memory

Locale O

O

var x 10;

on here.gpus[0]

var A =
A += 1;
}

writeln (x) ;

[1,

2y

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core GPU Core . Memory

10;

var X

Locale O

coforall g in here.gpus do on g {
var A = [1, 2, 3, 4, 5, ...]1;

‘O A += 1;
}

coforall across local GPUs
GPU1

writeln (x) ;

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core GPU Core . Memory

var x = 10;
Locale 1 Locale O coforall 1 in locales do on 1 {

coforall g in here.gpus do on g {

var A = [1, 2, 3, 4, 5, ...]1;

O A += 1;
}

RERE-3E-3K -]
Lo BE 2K
[o 2K 2K
coforall i T
GPU 1 GPU 1
teBE AR AR] o0 oo
i teBE AR AR I o0 ae
Lo 2K 2K K] Lo 2K 2K K] }
writeln (x) ;
: coforall across local GPUs |
8

o o0

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core GPU Core . Memory

parallel statements var x = 10;
with cobegin Locale 1 Locale 0 coforall 1 in locales do on 1 {

cobegin
coforall g in here.gpus do on g {
var A = [1, 2, 3, 4, 5, ...]1;

O A +—= 1;

o o0
o o0

RERE-XE- XK | oo o
ololo I ololo
. gloe il bl b var A = [11 2/ 3/ 4/ 5/ ---];
inner
- - A +=1;
GPU1 GPU 1 a }

ololo

|| [e]e]e

ololo
writeln (x) ;

: outer coforall |
9

e

e

e
o o0

oo

RECENT IMPROVEMENTS

10

FEATURES

e Fundamentals working ¢ GPU Module Portable features for
« assertOnGpu forall/foreach
o setBlockSize e foreach intents

o createSharedArray
e atomic operations
e GpuDiagnostics Module
o Count number of launches
» Verbose kernel launches
e Initial profiler support

GPU MODULE

e Has basic introspection/debugging support

e assertOnGpu
— Compilation fails if the loop is not GPU-eligible, execution fails if it is not run on a GPU sublocale

e gpuWrite/gpuWriteln
e gpuClock/gpuClocksPerSec
e A new standard module to support fundamental GPU operations
» setBlockSize
o createSharedArray
e syncThreads
Next steps:
e We expect most of the functionality here to be implemented in existing Chapel features
e i.e., writeln should replace gpuWriteln
e Designing new features for foreach/forall loops for fundamental GPU operations in a portable way
e i.e, syncThreads can be implemented with some form of a barrier
e i.e, the user should be able to query the GPU thread ID or Chapel task ID from inside a forall loop

—

12

GPU DIAGNOSTICS MODULE

 Basic diagnostics support modeled after CommDiagnostics module
o Currently only supports counting/reporting kernel launches

// print a message out everytime a kernel is launched

startVerboseGpul() ;
// count kernel launches

startGpuDiagnostics () ;
on here.gpus[0] {
foreach i in 1..10 do //gpu-eligible operations

}

stopGpuDiagnostics () ;
stopVerboseGpu () ;
writeln (getGpuDiagnostics()) ;

Output:
0 (gpu 0): foo.chpl:4: kernel launch (block size: 512x1x1) # viastartVerboseGpuQ

(kernel launch: 1) # via getGpuDiagnosticsQ

—

PROFILER SUPPORT

Background:
« Debugging and profiling GPU kernels are typically more difficult than CPU applications
—1/O support is typically poor, execution model is less intuitive, esoteric challenges
« NVIDIA has numerous profilers, where NSight Compute is used for profiling kernel performance
—While using profilers for Chapel in general is not very straightforward, focusing on kernels is easier
o Out-of-the-box: NSight Compute was able to show line-by-line hardware counters when '-g' was used
—However, '--fast -g' thwarted assembler optimizations = reduced kernel performance = less valuable profiling

This Effort:
« Added the '--gpu-ptxas-enforce-optimizations' flag fo ensure that assembler optimizations are enabled
Impact:
« Significant help while trying to understand performance of compiler-generated kernels
—Kernel performance is virtually unaffected
— Profiler shows line-by-line information accurately
« Can compare performance behavior of a reference version against the Chapel version

—

14

PORTABILITY

e Monolithic runtime e Modular runtime e Intel support
« CUDA Driver API e AMD support
wrapper e "cpu-as-device" mode

AMD SUPPORT

 AMD GPUs are now supported
e 1.30: single-locale
e 1.31 pre-release: multilocale

Application

Modules

g Compiled binary e Features/correctness
s . Mostly on-par with NVIDIA
O GPU Layer « Some 64-bit math functions aren't
(interface to app/compiler) supporTed
Runtime e
NVIDIA AMD
Interface Interface * Performance
e Only initial studies so far
o e (more on this later)
S e HIP
9 Driver AP|
c API
Q
(o}
()
a

I]

CPU-AS-DEVICE SUPPORT

e Supports GPU locale model w/o GPUs
o GPU functionality is diverted to CPU

Application

Modules

e Loops are outlined for kernel generation
— C iled bi .

Q ompried dinary o however, they are not compiled/launched
e loop always runs for equivalent correctness
O GPU Layer

| (interface to app/compiler) e Use-cases
Runtime .
X cpu NVIDIA AMD « assertOnGpu to confirm GPU offload
1 Interface Interface || Interface e GpuDiagnostics to count/report "launches"

0
S e HIP
9 Driver AP|
c API
()]

o
()

a)

I]

17

FUTURE WORK: INTEL GPU SUPPORT

Modules

Application

Compiled binary

O
(0 TR
©
c
O GPU Layer
(interface to app/compiler)
Runtime *
CPU NVIDIA AMD Intel
1 Interface Interface Interface Interface
4 API
g CUP A LIp one
g Driver AP| Level
S API Zero (?)
o
()]
()]

I]

e Intel GPU support is the next target
e Modular runtime should help
« Compilation is a bigger question

— GPU transformations should be the same
across vendors

- LLVM generates the code for us;
- but no Intel GPU target, yet
—Intel's LLVM fork can target Intel GPUs

— Potential solution: rely on system LLVM that's
Intel-GPU-enabled

e Implementation has not started, yet

PERFORMANCE

e |nitial studies » Significant performance improvements e "array-on-device"

» Faster kernel launch e Compiler optimizations
e Faster kernel execution

e "array-on-device" mode
e New benchmarks
e Initial AMD experiments

GENERAL PERFORMANCE IMPROVEMENTS

. . Kernel Launch Time 6.42 milliseconds
» Eager binary loading 7
e GPU binary is loaded at application launch 6
o ~300x faster kernel launch times 5

» Loop-invariant code motion before GPU pass
e Loops are optimized before turning info kernels

Time (ms)
w

» Faster kernel execution
» Application-level optimizations with ChOp*

0.02 milliseconds

o -

Aug 2022 Sep 2022 Oct2022 Nov 2022 Dec 2022 Jan 2023 Feb 2023 Mar 2023
N-Queens Performance with ChOp

(1x NVIDIA P100) Stream (using NVIDIA RTX A2000)

*._.x--—->e_—__—__—"-;_-__-_$:.'..-..-..-..-..-..-..-..-..—..—..-.j‘

Interop Native

N ff —
() () Off by 5 200
o
< o o
15 0.30 0.36 19% S % C+CUDA =
] °© O 100 ~®- 1.30 (1.29+Eager Load+LICM) m
16 179 2.06 15% |'E -M- 1.30 Prerelease (1.29+Eager Load)
17 12.47 1476 18% ; . %12 .
o 32 64 128
18 Q494 110.98 17%
Number of Elements (M)

: *Tiago Carneiro, Nouredine Melab, Jan Gmys, Guillaume Helbecque. et al. — INRIA Lille, France; Imec, Belgium; University of Mons, Belgium; et al. I 20

WORK IN PROGRESS: AMD PERFORMANCE

HPCC-Stream: Similar to NVIDIA 800

e Maybe a little lower with smaller data
« potentially due to higher kernel launch costs

Throughput
(GiB/s)
B (o))
8 8

200

ChOp: Performance drops with larger data
e Investigation is pending

f

Stream (using AMD Instinct MI1100)

L il bl - el UL
* —¢ C+HIP

-@- Chapel)

32 64 128
Number of Elements (M)

N-Queens Performance with ChOp
(1x AMD MI100)

e N oty
15 0.40 0.55 36%
16 1.14 2.18 Q1%
17 6.36 13.28 209%
18 47.04 11551 246%

Better

21

FUTURE WORK

Time (s) How memory is allocated
(RTX A2000)

Unified Arrayon

Unified Arrayon

Memory Device

Memory Device
var CpulArr: [1l..n] int; metadata host host
i faale — < .
data host host (registered)
0.038 0.018 on here.gpus[0] {
Faster initialization on GPU \
var GpuArr: [1l..n] int;<: mefadata managed managed

Unified Array on data managed device
Memory Device

0.95 0.033 /GpuArr = CpuArr;

0.14 0.034 \CpuArr = GpuArr;

}

Faster data movement

: | 22

SUMMARY

Status so far:

e Can target NVIDIA and AMD GPUs in single- and multilocale

e The performance has been significantly improved, but there's more room

e Fundamental GPU operations are supported via a standard module

e Diagnostics and introspection tools can help performance analysis and optimization

Next steps:

e Target Intel GPUs

e More performance improvements

e New features to support portable programming between GPU- and vector-based execution

23

