
Runtime comparison between Chapel and Fortran
Willian Carlos Lesinhovski

wlesin@yahoo.com.br
Department of Environmental Engineering, Federal

University of Paraná
Curitiba, PR, Brazil

Nelson Luís Dias
nelsonluisdias@gmail.com

Department of Environmental Engineering, Federal
University of Paraná
Curitiba, PR, Brazil

Livia Souza Freire
liviafreire@usp.br

University of São Paulo
São Carlos, SP, Brazil

Anna Caroline Felix Santos de Jesus
carolinefelix@usp.br

University of São Paulo
São Carlos, SP, Brazil

ABSTRACT
In this text we present a simple but interesting runtime com-

parison between Chapel and Fortran when performing some very
common algorithms in numerical analysis: matrix multiplication,
Lax method for the kinematic wave equation and SOR method for
the Poisson equation. Chapel presented a very satisfactory perfor-
mance reducing the processing time from 10% to 50% compared to
Fortran.

KEYWORDS
Chapel vs Fortran, desktop computing, numerical methods
ACM Reference Format:
Willian Carlos Lesinhovski, Nelson Luís Dias, Livia Souza Freire, and Anna
Caroline Felix Santos de Jesus. 2023. Runtime comparison between Chapel
and Fortran. In Proceedings of The 10th Annual Chapel Implementers and
Users Workshop (CHIUW 2023). ACM, New York, NY, USA, 3 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Numerical simulations in fluid mechanics demand a high compu-

tational cost, often requiring the use of supercomputers and parallel
programming. In general, models are programmed in Fortran be-
cause of its speed. In view of that, since we want to use Chapel for
fluid mechanic simulations, we decided to perform some runtime
comparisons between these two programming languages to ensure
that Chapel is in fact a good choice for our research purposes.

The numerical methods used in fluid mechanics in general are
divided into several subroutines. Therefore, we chose some of the
most relevant ones for our purposes to compare the performance
of both languages in each one of them. In this way, it is easier
to analyze the strengths and weaknesses of each language while
ensuring that the algorithms are coded in essentially the same way.

For the comparisons we chose: multiplication of matrix by vector;
solution of the kinematic wave equation by the Lax method and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHIUW 2023, June 1-2 2022, Online Conference
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

solution of the Poisson equation by the SOR method. Although
these algorithms can be programmed in parallel, our focus here is
to compare the performance of the code generated by each language
on a single core. Relatedwork is also being reported on the efficiency
of parallelized Chapel × Fortran on a single locale, see [1].

Tests were performed on a computer with a Intel Core i9-12900K
processor and a Linux Mint 21.1 operating system. For compilation
we use the flag -O3 in Fortran and --fast in Chapel 1.29.

2 MATRIX VECTOR MULTIPLICATION
Let 𝑥 , 𝑦 be real vectors of size 𝑛 ∈ N and 𝐴 a real matrix of size

𝑛 × 𝑛 with elements 𝑎𝑖 𝑗 . The product 𝑦 = 𝐴𝑥 is defined by

𝑦𝑖 =

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 , 𝑖 ∈ {1, . . . , 𝑛}. (1)

Matrix-vector multiplication is used in many algorithms, so a
well-optimized routine to do it is of great help and interest. In
general, the runtime of the 𝐴𝑥 product can be improved using low-
level routines and advanced matrix multiplication algorithms [2].
For Fortran there is the matmul function and in Chapel we can use
the gemv function from the BLAS library. However, for comparison
purposes we will also implement the product in a standard way.

The algorithm for calculating (1) in Chapel is as follows
for i in 1..n do {

var sum = 0.0;
for j in 1..n do {

sum += A[i,j]*x[j];
}
y[i] = sum;

}

As the calculation of 𝑦𝑖 uses only elements from the row 𝑖 of 𝐴,
programming languages that store arrays considering row-major
order (Chapel) have an advantage over those that use column-major
order (Fortran). On the other hand, if we define the multiplication
𝑦 = 𝑥𝑇𝐴 as

𝑦𝑖 =

𝑛∑
𝑗=1

𝑥 𝑗𝑎 𝑗𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, (2)

only the elements of column 𝑖 of 𝐴 are used for the calculation of
𝑦𝑖 and languages that use column-major order have an advantage.
In this case the algorithm in Fortran becomes
do i = 1,n

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CHIUW 2023, June 1-2 2022, Online Conference Lesinhovski, et al.

sum = 0.0
do j = 1,n

sum = sum + x(j)*A(j,i)
end do
y(i) = sum;

end do

Table 1 shows the time in seconds to calculate𝐴𝑥 and 𝑥𝑇𝐴 using
a standard algorithm to compute (1) and (2) and also 𝐴𝑥 with the
aforementioned low-level functions in the two languages. In the
tests we chose 𝑛 = 10000 and 𝐴 and 𝑥 were filled with random
values.

Table 1: Runtime of matrix vector multiplication.

Language 𝐴𝑥 𝑥𝑇𝐴 𝐴𝑥 (gemv/matmul)
Chapel 0.0820 0.5541 0.0278
Fortran 0.3625 0.0523 0.0340

The standard algorithm for𝐴𝑥 is faster in Chapel than in Fortran,
but for 𝑥𝑇𝐴 we have the opposite: 𝑥𝑇𝐴 in Fortran is faster than
𝐴𝑥 in Chapel. Thus, we can see that the way of storing the matrix
and how its elements are accessed has a large influence on the
performance of the codes. As expected, the low-level functions
provide a considerable speed gain with gemv being the fastest option
among those tested.

3 KINEMATIC WAVE EQUATION
Lax’s method for the kinematic wave equation is a fairly simple

method and is a good starting point to compare Chapel and Fortran
when solving differential equations. Consider the kinematic wave
equation given by

𝜕

𝜕𝑡
𝑢 (𝑥, 𝑡) + 𝑐 𝜕

𝜕𝑥
𝑢 (𝑥, 𝑡) = 0, (3)

with domain 𝑥 ∈ [0, 10], 𝑡 ∈ [0, 1] and the following initial condi-
tions

𝑢 (𝑥, 0) =
{

2𝑥 (1 − 𝑥), if 0 ⩽ 𝑥 ⩽ 1,
0, if 1 < 𝑥 ⩽ 10,

𝑢 (0, 𝑡) = 𝑢 (10, 𝑡) = 0, 0 ⩽ 𝑡 ⩽ 1.
For the discretization of the equation let us consider the grid

(𝑥𝑖 , 𝑡𝑛) defined by 𝑥𝑖 = 𝑖Δ𝑥 where 𝑖 ∈ {0, 1, . . . 𝑁𝑥 } with Δ𝑥 =

10/𝑁𝑥 and 𝑡𝑛 = 𝑛Δ𝑡 where 𝑛 ∈ {0, 1, . . . 𝑁𝑡 } with Δ𝑡 = 1/𝑁𝑡 .

The approximate solution 𝑢𝑛
𝑖
≈ 𝑢 (𝑖Δ𝑥, 𝑛Δ𝑡) calculated using the

Lax-Friedrichs method is given by the relation:

𝑢𝑛+1𝑖 =
1
2
[
𝑢𝑛𝑖+1 + 𝑢

𝑛
𝑖−1 − 𝜎 (𝑢𝑛𝑖+1 − 𝑢𝑛𝑖−1)

]
,

where
𝜎 =

𝑐Δ𝑡

Δ𝑥
.

There are two options for storing the values of 𝑢 in an array:
saving the approximations of each instant of time in a row or in a
column. The first one is more efficient in programming languages
that use row-major-order while the second one is better for pro-
gramming languages that use column-major-order. We will test
both in each language. Also, since in Lax’s method only the infor-
mation from the time 𝑡𝑛 is used to calculate the values in 𝑡𝑛+1, it

is possible to write the code in such a way that only the values of
these two instants of time are stored in the array replacing 𝑢𝑛−1

𝑖
by

𝑢𝑛+1
𝑖

for 𝑛 ⩾ 1.
The code of the first option in Chapel is

var nold = 0;
var nnew = 1;
for n in 1..Nt do {

for i in 1..Nx-1 do {
u[nnew,i] = 0.5*((u[nold,i+1] + u[nold,i-1])-
cour*(u[nold,i+1]-u[nold,i-1]));

}
u[nnew,0] = 0.0;
u[nnew,Nx] = 0.0;
nnew <=> nold;

}

and the code of the second option in Fortran is
nold = 0
nnew = 1
do n = 1,Nt

do j = 1,Nx-1
u(j,nnew)=0.5*((u(j+1,nold)+u(j-1,nold))-&
cour*(u(j+1,nold)-u(j-1,nold)))

end do
u(0,nnew) = 0.0
u(Nx,nnew) = 0.0
nk = nnew
nnew = nold
nold = nk

end do

For the tests we set 𝑁𝑥 = 20000, 𝑁𝑡 = 10000 and 𝑐 = 2. Table 2
shows the runtime in seconds of the codes in Chapel and Fortran.
Comparing the best results for each language, Chapel performed
significantly better than Fortran reducing the runtime in half. Fur-
thermore, in both languages the codes that use the best option to
build the array are significantly faster than those that use the worst
option.

Table 2: Runtime of Lax method in Chapel

Language Rows Columns
Chapel 0.0971 0.2286
Fortran 0.3492 0.1893

4 POISSON EQUATION
In many numerical methods for solving the Navier-Stokes equa-

tions it is necessary to solve a Poisson equation for the pressure
term at each time step. Therefore, comparing the numerical solution
of the Poisson equation, typically done with the SOR method, is of
great relevance for our research purposes.

Consider the Poisson equation given by(
𝜕2𝑢

𝜕𝑥2
+ 𝜕2𝑢

𝜕𝑦2

)
= 𝑓 , (4)

with domain 𝐷 = [0, 1] × [0, 1] where
𝑓 (𝑥,𝑦) = −(𝜋2) (𝑥2 + 𝑦2) sin(𝜋𝑥𝑦),

Runtime comparison between Chapel and Fortran CHIUW 2023, June 1-2 2022, Online Conference

with the following boundary conditions
𝑢 (𝑥, 1) = sin(𝜋𝑥),
𝑢 (1, 𝑦) = sin(𝜋𝑦),
𝑢 (𝑥, 0) = 𝑢 (0, 𝑦) = 0.

For the discretization of the equation let us consider the grid
(𝑥𝑖 , 𝑦 𝑗) defined by 𝑥𝑖 = 𝑖Δ𝑙 and 𝑦 𝑗 = 𝑗Δ𝑙 where 𝑖, 𝑗 ∈ {0, 1, . . . 𝑁 }
with Δ𝑙 = 1/𝑁 . Considering a central finite difference scheme for
the second order derivatives and applying the SOR method with
relaxation parameter 𝜔 we have the following iterative algorithm
to solve the Poisson equation{

𝛿𝑢𝑘
𝑖,𝑗

= 𝜔

(
(𝑢𝑘

𝑖+1, 𝑗 + 𝑢
𝑘+1
𝑖−1, 𝑗 + 𝑢

𝑘
𝑖,𝑗+1 + 𝑢

𝑘+1
𝑖, 𝑗−1 − Δ𝑙2 𝑓𝑖, 𝑗)/4 − 𝑢𝑘

𝑖,𝑗

)
,

𝑢𝑘+1
𝑖, 𝑗

= 𝑢𝑘
𝑖,𝑗

+ 𝛿𝑢𝑘
𝑖,𝑗
.

The algorithm stops when the difference of two consecutive
iterations is less than a given tolerance 𝜖 , that is: when for some 𝑘
we have

1
(𝑁 − 1)2

𝑁−1∑
𝑖, 𝑗=1

|𝛿𝑢𝑘𝑖,𝑗 | < 𝜖.

Based on the results of previous tests, we already know that
the way to build the arrays and access their elements has a huge
impact on the processing time of the algorithms. Therefore, for
the SOR method we will only consider the best option for each
programming language.

Due to the symmetry of the problem, it is only necessary to
change the order in which the elements are updated. The code for
the SOR algorithm in Chapel is
var err = 2.0*epsilon;
var k = 0;
while err >= epsilon do {

err = 0.0;
for i in 1..N-1 do {

for j in 1..N-1 do {
var um = (u[i+1,j]+u[i-1,j]+u[i,j-1]+

u[i,j+1]-h2*f[i,j])/4.0;
var du = omega*(um - u[i,j]);
u[i,j] += du;
err += abs(du);

}
}
k += 1;
err /= N2;

}

and the code for the SOR algorithm in Fortran is
error = 2*eps
k = 0
do while (error >= eps)

error = 0.0
do j = 1,N-1

do i = 1,N-1
um = (u(i+1,j)+u(i-1,j)+u(i,j-1)+&

u(i,j+1)-h2*f(i,j))/4.0
du = omega*(um - u(i,j))
u(i,j) = u(i,j) + du
error = error + abs(du)

end do
end do
k = k+1
error = error/N2

end do

Table 3 shows the runtime in seconds and the number of iter-
ations of the SOR Method for 𝜔 = 1.95, 𝑁 = 512 and 𝜖 = 10−8
with initial guess 𝑢0

𝑖, 𝑗
= 0 in the internal points of the grid. We see

that after the same number of iterations the method was about 10%
faster in Chapel than in Fortran.

Table 3: Runtime of SOR method

Language Runtime Iterations
Chapel 7.4721 7507
Fortran 8.3910 7507

5 CONCLUSIONS
The algorithms presented in this text are straightforward, with

arrays and loops done serially. As a result, the codes in Chapel are
very similar to those in Fortran allowing a direct comparison of
performance between the two languages which is our goal. Fur-
thermore, Chapel has some interesting features and advantages
over Fortran. For example, swapping values between two variables
in Chapel is done with one line of code using the command <=>,
on the other hand in Fortran three lines of code and an auxiliary
variable are required. Also, in Fortran it is necessary to declare all
the loop variables, which is not necessary in Chapel.

Based on the results obtained in this work, even not performing
tests with parallel algorithms, we can conclude that Chapel can be
somewhat faster than Fortran. Therefore, we decided to use Chapel
for the implementation of our fluid mechanics model due to its
competitive performance compared to Fortran. Also, our target
programs will require parallel processing which is much easier to
do in Chapel than in Fortran.

6 ACKNOWLEDGMENTS
This study was funded by Brazil’s Coordination for the Improve-
ment of Higher Education Personnel (CAPES).

REFERENCES
[1] Anna de Jesus et al. 2023. Parallel Implementation in Chapel for the Numerical

Solution of the 3D Poisson Problem. In Chapel Implementers and Users Workshop.
[2] Volker Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13 (1969),

354–356.

	Abstract
	1 Introduction
	2 Matrix vector multiplication
	3 Kinematic wave equation
	4 Poisson equation
	5 Conclusions
	6 Acknowledgments
	References

