
Removing Temporary Arrays in Arkouda

Ben McDonald
 Hewlett Packard Enterprise

USA
 ben.mcdonald@hpe.com

ABSTRACT
This talk discusses experimental modifications made to the
Arkouda (a NumPy-like Python package with a Chapel backend
server) messaging layer to pass several operations together as a
block of Lisp code to be parsed on the server in one message, as
opposed to the existing model of each command being evaluated
individually, requiring multiple messages to evaluate compound
expressions. These modifications were made to eliminate the need
for extra temporary array creation when executing compound
operations in Arkouda. To improve the performance of the
implementation, the initial code, which parsed the Lisp code once
per-task, was optimized to parse only once per message and remove
dynamic allocations. The implementation is evaluated by
comparing it against current Arkouda performance. The results of
the comparison show that the Lisp interpreter is not yet
outperforming standard Arkouda code, but additional functionality
can be supported through this new feature.

1 INTRODUCTION
Arkouda[1] is a NumPy-like Python package designed for data

scientists to interactively use supercomputers and is implemented
with a Chapel backend server. The building block of the Arkouda
server is the Chapel block distributed array, and most Arkouda
operations are performed in parallel across these arrays. When
performing compound operations, such as ‘a * x + y’, Arkouda will
pass two messages to the server: the first to execute ‘a * x’,
returning a temporary array of the result, and the second to calculate
the result of the operation added to ‘y’ (i.e., ‘tmp + y’).

This need to create temporary arrays and pass multiple
messages to the server to evaluate compound operations in
Arkouda creates additional messaging and memory overheads. To
solve this problem, an Arkouda Lisp interpreter was implemented,
turning compound expressions into a block of Lisp code to be
parsed on the server, allowing these operations to be evaluated in a
single message with no temporary arrays. The current performance
of Lisp interpreted expressions in Arkouda is slightly behind
standard Arkouda operations but removes the temporary array,
reducing memory overhead, and adds support for new features,
such as filter operations.

2 LISP INTERPRETER IMPLEMENTATION
Lisp[2] is a programming language with a simple syntax and a

parenthesized, prefix notation. Lisp was chosen as the language for

the task of combining multiple Arkouda server messages into one
because of the relative ease of parsing Lisp expressions.

The initial implementation would take the compound
expression to be executed from the Python client, convert it to an
AST and then construct a Lisp expression as a string to be passed
to the server. Once the Lisp string reaches the Arkouda backend
server, the expression is parsed and executed, returning the result
of the expression back to the client.

Given that interpreters were not part of the initial design scope
of the Chapel language, the language features of Chapel made the
implementation process go very smoothly. Chapels model for
object-oriented programming, having both records and classes with
multiple management types, allowed adequate flexibility for the
data structures required. The biggest challenge in the
implementation came from Chapels static typing system, which is
not unique to Chapel, but requires an additional level of abstraction
of data structures to allow multiple different types to be supported
in the lisp interpreter.

3 BENEFITS OF LISP INTERPRETER
Operations between large arrays in Arkouda will cause an error

if the addition of the temporary array exceeds the amount of
available memory, whereas the Lisp interpreter will perform the
operation in-place. This means that much larger operations can be
evaluated by using the Lisp interpreter as opposed to regular
Arkouda operations.

With Arkoudas current design, computing the expression ‘a *
x + y’ will require up to 4 times the amount of memory of the largest
array in the expression (1 for each array, 1 for the temporary array
created by Arkouda), while the lisp interpreter will only at most
require 3 times the amount of memory of the largest array.

Additionally, the Lisp interpreter adds support in Arkouda for
“filter” operations, such as ‘((y+1) if (x < v) else (y-1))’, where an
expression is applied to each element of an array based on a
conditional.

Finally, the Lisp interpreter allows users of Arkouda to define
purely client-side functions of arbitrary code that will be executed
on the server as a single message. Today, the support is limited to
binary operations, but could be extended to support additional
Python operators through addition to the server-side Lisp parser.

4 OPTIMIZING THE CHAPEL CODE
The initial Lisp interpreter implementation was significantly

behind the performance of standard Arkouda operations due to

creating class instances, which are heap-allocated in Chapel, for
each token in the Lisp expression for every task. This means that
the expression ‘a * x + y’ would result in 5 dynamic allocations per
element of the array with the initial implementation, as there are 5
symbols in the expression.

 To remove the overhead of these allocations, a “memory pool”
was implemented, which allows different tasks to share allocations.
Instead of allocating every time a symbol is parsed, the memory
pool is queried to see if there are any existing objects that can be
used, if so, the existing allocation is used, if not, a new object is
allocated, which is then returned back to the memory pool once it
goes out of scope so that it can be reused by other tasks, instead of
allocating a new object. This optimization led to around a 60%
performance improvement, but still significantly underperformed
in comparison to standard Arkouda operations.

The next optimization was a change in the implementation to
parse the Lisp expression only once per message. The initial
implementation parsed the Lisp expression for each task, meaning
that each task was parsing the same piece of code and repeating
work that may have already been accomplished by another task. To
fix this problem, the Lisp expression is parsed only once prior to
starting evaluation, passing each task a fully parsed version of the
Lisp expression. This optimization led to a further ~25%
performance improvement.

5 PERFORMANCE RESULTS
Table 1 shows the Arkouda performance of evaluating the

operation ‘a * x + y’[3], a simple compound expression where ‘a’
and ‘x’ are arrays storing 64-bit ‘real’ values and y is a 64-bit ‘real’
scalar value on a single locale of a Cray CS. Through the
algorithmic optimizations discussed in section 3, the Lisp
interpreter performance improved ~6x when operating on 100,000
element arrays and ~50x on 10,000,000 element arrays. The
optimized code is ~2x behind the standard Arkouda operations, but
it is believed there is further room for optimization. For
explanations of “Memory pool” and “Single parse”, please refer to
section 3.

Version 100,000

Element
1,000,000
Element

10,000,000
Element

Arkouda 0.82 GiB/s 4.35 GiB/s 31.46 GiB/s
Initial Lisp 0.13 GiB/s 0.21 GiB/s 0.29 GiB/s
Memory pool 0.56 GiB/s 1 GiB/s 1.13 GiB/s
Single parse 0.79 GiB/s 3.82 GiB/s 15.45 GiB/s

Table 1: Execution performance on a Cray CS on a single locale

6 NEXT STEPS
The Lisp interpreter code currently resides in the “Arkouda

contrib” repository [5], so can be pulled into an existing Arkouda
server through the modular build mechanism supported in
Arkouda[4]. Prior to merging it into the main repository, additional
performance improvements need to be implemented.

Today, the Lisp interpreter does all evaluation on locale 0, even
in a distributed setting, meaning that there will be a large amount
of communication when operating on distributed arrays and the
code does not scale as more nodes are added. Resolving this issue
so that each locale will operate on local data, rather than migrating
all data to locale 0 will need to be completed before merging into
the Arkouda main repository.

Furthermore, the implementation currently supports binary
operators, comparison operators, and conditional statements, but is
capable of supporting a much wider set of features, such as sorting
or grouping.

Finally, through performance experiments, the overhead of the
Lisp interpreter preventing it from competing with regular Arkouda
operations is coming from storing expression tokens as abstract
class values and casting them to concrete tokens to evaluate the
expression. These tokens have to be stored as abstract class values
and then casted to concrete types since types in Chapel must be
known at compilation time. This means, to support multiple
different types, the lisp interpreter tokens must be cast to concrete
values for each value in the array, operations that are about 5 times
more expensive than a binary addition.

By simplifying the supported features and removing the class-
based tokens while supporting only a subset of the functionality,
the Lisp interpreter has been shown to outperform regular Arkouda
operations. Based on these results, further investigation into how
the overhead of the class-based tokens could be removed would be
needed.

7 CONCLUSION
This work highlights a work in progress that aims to reduce the

memory overhead and improve performance of Arkouda
compound operations. The current implementation reduces the
memory footprint of compound operations by eliminating
temporary arrays but is behind the performance of standard
Arkouda compound operation evaluation. Additionally, this work
enables some new functionality in Arkouda, such as filter
operations over Arkouda arrays. The problem of Arkouda memory
usage and multiple message passing is still being worked on and
next steps have been identified.

ACKNOWELDGEMENT
The concept of the Arkouda lisp interpreter was conceived by

Mike Merrill, who started the implementation presented in this
paper and co-created Arkouda. This work would not have been
possible without the contributions of Mike Merrill.

REFERENCES
[1] https://github.com/bears-r-us/arkouda
[2] https://lisp-lang.org/
[3] https://github.com/Bears-R-Us/arkouda-contrib/blob/main/aklisp/test/lisp-

stream.py
[4] https://bears-r-us.github.io/arkouda/setup/MODULAR.html
[5] https://github.com/Bears-R-Us/arkouda-contrib/tree/main/aklisp

