
Software Engineer – Chapel team
CHIUW 2023
June 2, 2023

Ben McDonald, HPE

REMOVING TEMPORARY ARRAYS
IN ARKOUDA

Arkouda
• A Python library supporting a key subset of the NumPy and Pandas interfaces for Data Science

– Uses a Python-client/Chapel-server model for scalability and performance
– Computes massive-scale results (multi-TB arrays) within the human thought loop (seconds to a few minutes)

• Open-source: https://github.com/Bears-R-Us/arkouda

Typical Workflow
• Read in hundreds of files containing terabytes of data
• Perform typical data science analysis on the data

– i.e., binary operations, sort, etc.

• Evaluate results/write to file

Note
• Commands are sent and executed separately

ARKOUDA SUMMARY

2

https://github.com/Bears-R-Us/arkouda

CURRENT ARKOUDA EVALUATION MODEL

3

>>> a = ak.randint(...)
>>> x = ak.randint(...)
>>> y = 5

...

>>> a * x + y
<result-array>

...

>>> a * x + y * a + y
<result-array>

• There are several messages, several temporary arrays created for a single expression

Arrays and scalar allocated

a * x

tmp1 + y

a * x

tmp3 + y

...

2 server messages

2 binary operations

1 temporary array

4 server messages

4 binary operations

3 temporary arrays

Evaluation Model
• Commands are sent one at a time from the Python client to be evaluated by the Chapel server

– Human-readable response returned to Python client

• Each command is sent individually, even if written as a single expression (e.g., ‘a * x + y’)

Ideal for…
• …executing complex, compute-intensive operations requiring only a single message

– E.g., argsort, group by, etc.

Not ideal for…
• …executing simple expressions or small blocks of code requiring many messages

– E.g., binary operations, Python code using many different Arkouda functions, etc.

Idea for the best of both worlds…
• Send compound expressions to the server in one message, avoiding multiple messages and temporary arrays

– This could reduce memory footprint, improve performance of compound expressions, and enable new Arkouda features

ARKOUDA EVALUATION MODEL

4

ARKOUDA LISP INTERPRETER

5

LISP INTERPRETER IMPLEMENTATION

6

Python client Chapel server

>>> a * x + y

(+ (* a x) y)

1. Create AST out of Python expression
2. Convert AST into Lisp expression
3. Send Lisp expression to server

1. Parse Lisp expression
2. Evaluate expression in-place
3. Return result to client

(+ (* a x) y)

<result-msg><result-msg>

LISP INTERPETER ARKOUDA EVALUATION MODEL

7

>>> a = ak.randint(...)
>>> x = ak.randint(...)
>>> y = 5

...

>>> a * x + y
<result-array>

...

>>> a * x + y * a + y
<result-array>

• There are several messages, several temporary arrays created for a single expression
• There is one message, zero temporary arrays created for each expression

Arrays and scalar allocated

a * x

tmp1 + y

a * x

tmp3 + y

...

1 server messages

2 binary operations

0 temporary array

1 server messages

4 binary operations

0 temporary arrays

Usage
• Functions defined with the ‘@arkouda_func’ decorator

are converted to lisp and sent to server in 1 message
– Arbitrary Python code can be executed as a single message

on the server side if parsing has been implemented

ARKOUDA LISP INTERPRETER

8

Benefits
• New functionality can be supported (e.g., Arkouda functions shown above)

• Memory footprint reduced in compound expressions by reducing number of temporary arrays

• Communication between client and server requires only a single message
– As opposed to ‘numOps’ messages with original Arkouda model

• Potential for improved performance, evaluating entire expression at once, rather than piecewise

@arkouda_func
def my_func(v,x,y):

(a := v*10)
return ((y+1) if (not (x < a))

else (y-1))

PERFORMANCE OPTIMIZATIONS
& RESULTS

9

Performance results
• Simple ‘a * x + y’ operation used to gauge performance

– Worst case for lisp interpreter, since it is only removing 1 temporary/1 message; greater benefit as complexity increases

• Numbers collected on a single node of a Cray CS, elements of type ‘real(64)’ used for evaluation

• Initial performance numbers were over 100x behind standard lisp interpreter
Sources of overhead

• Evaluating entire lisp expression for each element of the array, even though it is identical each time
• Dynamic allocations of class-based data structures used to parse lisp expression
• Casting of expression tokens to concrete types, since types are not known at compile time

PERFORMANCE RESULTS

10

Version
1,000,000

Element Throughput
10,000,000

Element Throughput

Arkouda 4.35 GiB/s 31.45 GiB/s

Initial Lisp 0.21 GiB/s 0.29 GiB/s

Two main optimizations
1. Implement a “memory pool” to reduce heap-allocations

– Each symbol in the lisp expression dynamically allocating a class object when parsing
– Memory pool optimization returns each allocated object back to a memory pool once finished
– Heap allocations ~30x more expensive than binary operations, so significant slowdown from each allocation

2. Chunk the array, parsing the lisp expression once for each task, rather than once for each element
– The original code performed was parsing identical lisp expressions for each element in the array

PERFORMANCE OPTIMIZATIONS

11

• Throughput to evaluate ‘a * x + y’ using Arkouda arrays on a single node of a Cray CS:
– Higher is better on performance graph

• Lisp interpreter improved over 50x after optimizations, but still ~2x behind standard Arkouda evaluation model

PERFORMANCE RESULTS

12

0

5

10

15

20

25

30

35

Arkouda Initial Lisp Memory Pool Bulk Parse

T
hr

ou
gh

pu
t

(G
iB

/s
)

16 Locale Throughput

Be
tt
er

Version
1,000,000

Element Throughput
10,000,000

Element Throughput

Arkouda 4.35 GiB/s 31.45 GiB/s

Initial Lisp 0.21 GiB/s 0.29 GiB/s

Memory Pool 1.02 GiB/s 1.13 GiB/s

Bulk Parse 3.82 GiB/s 15.45 GiB/s

• The lisp interpreter provides new functionality into Arkouda and reduces memory footprint
• Performance still ~2x behind the standard Arkouda model

• Majority of additional overhead has been identified being spent in casting abstract tokens to values
• This is required in order to support multiple different types
• Overhead could be cut out by only supporting a single data type or having datatype-specific implementations

• Through experimentation, theoretical performance ceiling has been shown to be ~2x over base Arkouda

CONCLUSION

13

https://chapel-lang.org
@ChapelLanguage

THANK YOU

14

