Accelerating Data Analytics with Arkouda on GPUs

Josh Milthorpe
Brett Eiffert

Jeffrey S. Vetter
Oak Ridge National Laboratory
Oak Ridge, TN, USA

1 INTRODUCTION

Arkouda [7] is a framework for large-scale interactive data ana-
lytics that combines a Python front-end with a distributed server
implemented using Chapel to run on parallel architectures ranging
in size from a single node to an entire high-performance computing
system. While Arkouda is capable of exploiting traditional high-
performance compute capabilities, it is currently unable to use the
powerful GPU accelerators available in many HPC systems.

In this talk, we will demonstrate how the Chapel GPUAPI can
be used to accelerate Arkouda operations, which is most beneficial
when a chain of operations is executed on the same data. We extend
the GPUAPI to support shared virtual memory using CUDA unified
memory and use this support to implement a custom domain map
for Arkouda arrays. Our preliminary performance results show that
GPU-accelerated operations in unified memory perform better than
explicit memory management while simplifying the programming
task for complex Arkouda operations.

2 ACCELERATING ARKOUDA OPERATIONS
USING CHAPEL GPUAPI

The Chapel GPUAPI [5] provides abstractions over GPU program-
ming models, including CUDA, HIP, DPC++, and SYCL. The in-
cluded GPUArray class supports explicit allocation of device mem-
ory and transfer of data to/from device, while the GPUIterator
supports launching kernels implemented in a GPU-native program-
ming model (e.g. CUDA) on one or more local devices using a Chapel
data-parallel forall loop. We used the GPUAPI for the NVIDIA
architecture to implement Arkouda operations using optimized
CUDA implementations from the CUB [2] and NCCL [3] libraries.
For sort, we used the Onesweep algorithm for least-significant-digit
radix sort implemented in NVIDIA’s CUB library [1]. For merging
the individual sorted GPU chunks, we compare two algorithms: 1)
transferring back to host memory and merging on the host, and
2) a peer-to-peer merge-and-swap algorithm proposed by Tanasic
et al. [9] and extended for an arbitrary number of devices by Mal-
tenberger et al. [6]. As a design principle, we maintain the existing
Python client interface to Arkouda and focus on accelerating the
server-side (Chapel) implementation of each operation.

2.1 Device Cache: Explicit Memory
Management for Arkouda Arrays

Given a suite of GPU-accelerated versions of Arkouda functions that
can operate on data in GPU device buffers, we require a method to
move the operands for these functions (Arkouda arrays) to and from
the GPU. To support explicit memory management, we extended
Arkouda’s SymEntry class by adding a device cache, which is a
set of GPUArray instances that distribute an Arkouda array in the

available device memories. The device cache includes operations
to transfer data to and from devices, which may be called before
and after kernel execution.

Figure 1: API for the Arkouda SymEntry DeviceCache
class DeviceCache {

var isCurrent = false;

var deviceArrays: [gpuDevices] shared GPUArray?;

proc createDeviceArrays(a: [?aD] ?etype) { ... }
proc toDevice(deviceld: int(32)) { ... }
proc fromDevice(deviceld: int(32)) { ... }

The device cache tracks the allocation, update, and transfer of
data between device and host, meaning that a call to transfer data
to a device/host that already has the most up-to-date version does
not result in any data movement. This enables each Arkouda server
operation to be programmed to ensure data are in place before
kernel execution, while also allowing multiple operations on the
same data to be chained without the need for host-device transfers.

2.2 Arkouda Arrays in Shared Virtual Memory

While explicit management of memory transfers through the
GPUAPI can support efficient utilization of resources, it adds to
the programming effort for developers of server operations, who
need to define transfer points from host to device(s) before each
accelerated operation, and from device(s) to host for each client-
visible operation. Furthermore, in the context of an interactive
workflow where the user is operating on multiple Arkouda arrays,
it can be hard to predict access patterns so as to optimize use of
device memory. An alternative approach is to use shared virtual
memory (also known as unified [4] or managed memory), which is
a shared address space that is accessible from both host and device.
For NVIDIA GPUs with Pascal and later architectures, accesses to
shared virtual memory are handled by a hardware Page Migration
Engine, allowing memory to migrate transparently to a device
from anywhere in the system, on demand [8].

We propose a new Chapel distribution, GPUUnifiedDist,
which is a block distribution that allocates each local portion
of the distributed array in CUDA managed memory using
cudaMallocManaged. This distribution replaces the standard
BlockDist used in the SymArrayDmap class which determines
the domain map type to use when creating a new Arkouda array
represented as an instance of SymEntry. With this modification, an
Arkouda array in unified memory behaves like an ordinary Arkouda
array, except that array elements may be transparently migrated

when they are accessed on a device or on the host. We also propose
a new operation SymEntry.prefetchLocalDataToDevice that
initiates asynchronous prefetching of a region of an Arkouda array
to a specified device, to enable overlap of GPU kernel computation
with data transfer. Note that it is still necessary to synchronize
between device and host, for example, by calling the GPUAPI func-
tion DeviceSynchronize(), to ensure that all data are consistent
before they are migrated.

3 EVALUATION

3.1 Experimental Configuration

Single-node experiments were conducted on an NVIDIA DGX work-
station which has two 20-core Intel Xeon E5-2698s at 2.2 GHz clock
speed and 256 GiB of DRAM and four Tesla V100 GPUs each with
32 GiB of high-bandwidth memory. For the GPUs, NVHPC toolkit
v22.11 (CUDA v11.8) and CUDA driver version 530.30.02 were used.

3.2 Benchmark Operations

3.2.1 Reduction. We measured the time taken for a simple sum
reduction over variously-sized arrays of real(64) values. We
compared Chapel’s default sum implementation running on the
CPU (which is used by the Arkouda server) against a Chapel
GPUAPI implementation using the DeviceReduce: : Sum function
from NVIDIA’s CUB library that combines partial sums in a GPU
collective communication using ncclReduce. For the GPU imple-
mentation, we also compared the performance where the Arkouda
array is allocated in unified memory using GPUUnifiedDist against
a version using explicit memory management via GPUArray.

As shown in Figure 2, GPU reduction using unified memory
is approximately 50% faster than explicit memory management
with GPUArray for large data sizes. This may be because kernel
execution can begin before prefetching of data from host to device
is complete. A CPU-based reduction in host memory is fastest for
all problem sizes when the costs of data transfer to and from GPU
devices are included. However, considering only the kernel time
for the sum operation and collective reduction (discounting data
transfer to device), the GPU kernel is faster than the CPU time.
This suggests that there may be some benefit to offloading even a
simple reduction operation if it is part of a chain of operations on
the same data, as that would allow the cost of data transfer to be
amortized over multiple operations.

3.2.2 Histogram. To evaluate a more complex map-reduce oper-
ation, we measured the time taken to compute a histogram over
variously sized arrays of real (64) values. We compared Arkouda’s
histogram implementation for the CPU against a GPU implementa-
tion using the DeviceHistogram: :HistogramEven function from
NVIDIA’s CUB library that combines partial histograms in a GPU
collective communication using ncclAl1Reduce.

As shown in Figure 3, Arkouda’s CPU histogram implementation
is faster for small data sizes (<10°), while the GPU is faster for
larger sizes. For the GPU implementation, unified memory was
approximately 45% faster than explicit memory management using
GPUArray for larger data sizes.

Josh Milthorpe, Brett Eiffert, and Jeffrey S. Vetter

10.000
—a+— CUB (4 GPUs) GPUArray

——CUB (4 GPUs) umem
1.000 --¢--CUB (4 GPUs) umem kernel
—a— default sum (CPU)

0.100

Time (s)

0.010

0.001 $—o=————%-"

0.000
1.E+04

1.E+06
Number of elements

1.E+08 1.E+10

Figure 2: Performance of reduction using multi-GPU
CUB/NCCL vs. default Chapel reduction on host.

100.000
—e—Arkouda (CPU)

——CUB (4 GPUs) GPUArray
10.000

——CUB (4 GPUs) umem

1.000

0.100

Time (s)

0.010

0.001

0.000
1.E+04 1.E+06 1.E+08

Number of elements

1.E+10

Figure 3: Performance of histogram using multi-GPU
CUB/NCCL vs. Arkouda histogram on host.

Accelerating Data Analytics with Arkouda on GPUs

3.2.3 Sort. We also measured the time taken to sort variously sized
arrays of real (64) values. We compared Arkouda’s sort implemen-
tation against the default Chapel sort and two GPU unified-memory
implementations using the DeviceRadixSort: : SortKeys function
from NVIDIA’s CUB library. The time for each GPU implementation
includes the transfer of the sorted data from GPU back to host.

1000.000
—e—Arkouda (CPU)

100.000 CUB (4 GPUs) CPU merge

——CUB (4 GPUs) GPU merge

—=—default sort (CPU)

0.010

0.001

0.000
1.E+04

1.E+06
Number of elements

1.E+08 1.E+10

Figure 4: Performance of Arkouda sort using GPU unified
memory (merging either on GPU or on CPU) vs. Arkouda
sort on CPU and default Chapel sort on host.

As shown in Figure 4, the default Chapel CPU sort is fastest
for small data sizes (<10°), while Arkouda’s sort implementation is
faster for larger sizes. We also compared a pure-GPU sort implemen-
tation, where sorted chunks are merged via Maltenberger et al. [6]’s
peer-to-peer swap and merge algorithm, against a heterogeneous
algorithm where sorted chunks are copied back from host to device
for the final merge. Merging on the GPU provides approximately a
75% performance improvement compared to merging on the host
for array sizes > 108, and is 70% faster than Arkouda’s sort for the
largest data size (4 x 10%).

3.24 Chained Operations. Finally, we measured the end-to-end
time taken to perform a sequence of Arkouda operations (histogram,
sum, min, max) on the same Arkouda array, which remains resi-
dent in GPU memory between operations. We compared the de-
fault Arkouda CPU implementations against GPU implementations
using CUB/NCCL and either GPUArray or unified memory with
GPUUnifiedDist, for variously-sized arrays of real (64) values.
As shown in Figure 5, a chain of operations performed on GPU is
significantly faster than CPU. The unified memory implementation

100.000
—e—Arkouda (CPU)
B (4GP P
10.000 —+—CUB (4 GPUs) GPUArray
——CUB (4 GPUs) umem
1.000
“
(0]
e 0.100
=
0.010
0.001
0.000
1.E+04 1.E+06 1.E+08 1.E+10

Number of elements

Figure 5: Performance of a chain of Arkouda operations using
multi-GPU CUB/NCCL vs. CPU.

is approximately 40% faster than the GPUArray implementation for
larger problem sizes (> 10°).

This chained operation benchmark demonstrates the potential
performance benefit of GPU acceleration for Arkouda operations,
assuming that unnecessary data movement can be avoided. In this
talk we hope to present preliminary performance results for multi-
node (multi-locale), multi-GPU accelerated operations over Ark-
ouda arrays using unified memory.

Acknowledgment

This research used resources of the Experimental Computing Lab-
oratory (ExCL) at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725.

REFERENCES

[1] Andy Adinets and Duane Merrill. 2022. Onesweep: A Faster Least Signifi-
cant Digit Radix Sort for GPUs. https://doi.org/10.48550/arXiv.2206.01784
arXiv:2206.01784 [cs.DC]

[2] NVIDIA Corporation. 2023. CUB: Cooperative primitives for CUDA C++. https:
//github.com/NVIDIA/cub

[3] NVIDIA Corporation. 2023. NVIDIA Collective Communication Library (NCCL).
https://developer.nvidia.com/nccl Accessed: 2023-04-16.

[4] Mark Harris. 2013. Unified Memory in CUDA 6. https://developer.nvidia.com/
blog/unified-memory-in-cuda-6/

[5] Akihiro Hayashi, Sri Raj Paul, and Vivek Sarkar. 2022. A Multi-Level Platform-
Independent GPU API for High-Level Programming Models. In ISC High Perfor-
mance 2022 Workshops. https://doi.org/10.1007/978-3-031-23220-6_7

[6] Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, and Tilmann Rabl. 2022. Evaluating
multi-GPU sorting with modern interconnects. In International Conference on
Management of Data. 1795-1809. https://doi.org/10.1145/3514221.3517842

https://doi.org/10.48550/arXiv.2206.01784
https://arxiv.org/abs/2206.01784
https://github.com/NVIDIA/cub
https://github.com/NVIDIA/cub
https://developer.nvidia.com/nccl
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://doi.org/10.1007/978-3-031-23220-6_7
https://doi.org/10.1145/3514221.3517842

[71

(8]

[9]

Michael Merrill, William Reus, and Timothy Neumann. 2019. Arkouda: interactive
data exploration backed by Chapel. In ACM SIGPLAN 6th Chapel Implementers
and Users Workshop. 28-28. https://doi.org/10.1145/3329722.3330148

Nikolay Sakharnykh. 2016. Beyond GPU Memory Limits with Unified Memory on
Pascal. https://developer.nvidia.com/blog/beyond- gpu-memory-limits-unified-
memory-pascal/

Ivan Tanasic, Lluis Vilanova, Marc Jorda, Javier Cabezas, Isaac Gelado, Nacho
Navarro, and Wen-Mei Hwu. 2013. Comparison based sorting for systems with
multiple GPUs. In 6th Workshop on General Purpose Processor Using Graphics
Processing Units. https://doi.org/10.1145/2458523.2458524

Josh Milthorpe, Brett Eiffert, and Jeffrey S. Vetter

https://doi.org/10.1145/3329722.3330148
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://doi.org/10.1145/2458523.2458524

	1 Introduction
	2 Accelerating Arkouda Operations Using Chapel GPUAPI
	2.1 Device Cache: Explicit Memory Management for Arkouda Arrays
	2.2 Arkouda Arrays in Shared Virtual Memory

	3 Evaluation
	3.1 Experimental Configuration
	3.2 Benchmark Operations

	References

