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ABSTRACT
Applications that operate on large, sparse graphs and matrices ex-
hibit fine-grain irregular memory accesses patterns, leading to both
performance and productivity challenges on today’s distributed-
memory systems. The Partitioned Global Address Space (PGAS)
model attempts to address these challenges by combining the mem-
ory of physically distributed nodes into a logical global address
space, simplifying how programmers perform communication in
their applications. Chapel is an example of a programming lan-
guage that implements a PGAS. However, while Chapel and the
PGAS model can provide high developer productivity, the perfor-
mance issues that arise from irregular memory accesses are still
present. In this talk, we will discuss an approach to improve the
performance of Chapel programs that exhibit fine-grain remote
accesses while maintaining the high productivity benefits of the
PGAS model. To achieve this goal, we designed and implemented a
compiler optimization that performs adaptive prefetching for remote
data. Specifically, the compiler performs static analysis to identify
irregular memory access patterns to distributed arrays in parallel
loops and then applies code transformations to prefetch remote
data that will be needed in future loop iterations. Our approach is
adaptive because the prefetch distance (i.e., how many iterations
ahead to prefetch) is automatically adjusted as the program exe-
cutes to ensure the prefetches are not issued too early or too late.
Furthermore, the optimization is fully automatic and requires no
user intervention. We demonstrate runtime speed-ups as large as
3.2x via adaptive prefetching when compared to unoptimized base-
line implementations of different irregular workloads across three
different distributed-memory systems.
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1 INTRODUCTION
Applications that exhibit sparse and irregular memory access pat-
terns have become a crucial component in today’s data analyt-
ics workflows and scientific computing applications. Furthermore,
many of these applications require the use of distributed-memory
systems due to the large memory footprint of their input data. Using
conventional two-sided communication models like MPI is often
challenging for distributed-memory applications that exhibit irreg-
ular memory access patterns. This is because the access pattern is
often not known until runtime due to its data dependent nature.
The Partitioned Global Address Space (PGAS) model [7] is one ap-
proach that can address the productivity challenges that distributed

irregular applications face by providing a shared-memory style of
programming on a distributed-memory system. Under the PGAS
model, all of the physically distributed memory of a system can
be viewed logically as a single global address space, where each
compute node “owns” a partition of the address space. Chapel [4] is
an example of a programming language that implements a PGAS.

However, while high developer productivity can be achieved via
the PGAS model and Chapel, the performance of irregular applica-
tions is often hindered by fine-grain remote communication [5, 10–
12], which is a direct result of the shared-memory style of commu-
nication provided by the PGAS model. Fine-grain remote commu-
nication arises from irregular memory accesses to distributed data
and is at odds with modern high performance network intercon-
nects, like Infiniband, which provide the best performance when
sending fewer but larger messages. One solution to improve the
performance of PGAS/Chapel programs that exhibit irregular mem-
ory access patterns is to apply optimizations. However, because
irregular memory access patterns cannot be inferred at compile
time, the task of applying optimizations is often left entirely to the
programmer. This can dramatically reduce developer productivity
by requiring additional lines of code to be added to the program,
which leads to a significant increase in the amount of time required
to write the program. Additionally, applying such optimizations
often requires expert knowledge of irregular optimizations and an
in-depth understanding of the specific system/architecture that the
program is executing on.

In this talk, we will present an approach to improve the runtime
performance of irregular applications in Chapel by automatically
applying an optimization via the compiler. By applying the opti-
mization automatically, programmers are not required to modify
their code. Instead, the optimization is enabled by simply turning
on a compiler flag. The optimization performs adaptive prefetch-
ing for irregular memory access patterns present in forall loops.
Specifically, static analysis is used within the compiler to identify
irregular memory access patterns of the form A[B[i]] where A
is a distributed array. Then, transformations are applied to insert
the necessary code to prefetch remote data that will be needed in
future loop iterations. The optimization is adaptive because the
prefetch distance (i.e., how many loop iterations ahead to prefetch)
is automatically adjusted as the program executes. This ensures
that the prefetches are not being issued too early or too late, which
can degrade performance. We demonstrate that the performance
of different irregular workloads can be improved by as much as
3.2x across three different systems. We also provide insight into
the effectiveness of adapting the prefetch distance throughout the
program’s execution by conducting experiments where the distance
is held at a fixed value.
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2 OPTIMIZATION APPROACH
A performance issue specific to fine-grain remote reads (i.e., gets)
is that they are usually performed in a blocking manner, which
prevents tasks from proceeding with computation until the data has
arrived over the network. One approach to address this issue is to
hide communication latency by prefetching the remote data that will
be needed in the future, where these prefetches are non-blocking
and useful computation is performed while the prefetch is being
executed. Ideally, once that data is needed by a task, the prefetch has
completed and the data will be accessible at a lower cost. Lower cost
means that the prefetched data is presumably moved into some sort
of cache memory that is physically closer to the task that needs the
data. Prefetching has been widely used in both hardware [6, 14–16]
and software [1–3]. In this talk, we focus on software prefetching
since it is more easily leveraged for distributed-memory systems
and irregular memory access patterns.

In this section, we provide an overview of Chapel’s remote cache
and our adaptive remote prefetching optimization that is integrated
into Chapel’s compiler and leverages the remote cache. The op-
timization uses static analysis to identify candidate memory ac-
cesses to prefetch and then performs code transformations to enact
the prefetches. The prefetch distance is adjusted automatically as
the program executes to improve the timeliness of the prefetches.
Adaptive software prefetching approaches have been studied in the
past [9, 13], but our approach specifically targets remote memory
accesses within the PGAS model.

2.1 Chapel’s Remote Cache
Chapel’s remote data cache is a softwarewrite-back cachewith dirty
bits, local memory consistency operations and programmer-guided
prefetches. As the name suggests, the remote cache is designed to
store remote data. The initial design and implementation of the
remote cache was introduced by Ferguson and Buettner [8], and has
since been improved and integrated into Chapel’s runtime1. Their
design of the remote cache is not necessarily specific to Chapel,
as it considers the underlying puts and gets that are ultimately
issued by a PGAS program. As such, the high level design of our
adaptive remote prefetching optimization is not specific to Chapel.

Each compute core on a locale (i.e., node) has its own remote data
cache that operates independently from the other cores/caches. As
a task in Chapel is ultimately mapped to a compute core on a locale,
these caches can be considered to be per task. Each cache entry
corresponds to a 1024 byte cache page, and each cache line is 64
bytes. Remote reads are automatically rounded up to fill cache lines,
and remote writes to nearby data will be aggregated, if possible.
However, as with traditional CPU caches, there are limitations to
the benefits that can be provided by the remote cache for irregular
data access patterns that exhibit poor spatial and temporal local-
ity. Additionally, Chapel provides a low-level interface to perform
prefetches for the remote cache, which issue non-blocking reads
from specific remote addresses. These prefetches form the basis for
our adaptive prefetching optimization.

1The remote cache is enabled by default for all programs since version 1.24 of Chapel.

2.2 Static Analysis
The static analysis for the adaptive remote prefetching optimization
has the following three steps: (1) identifying candidate memory ac-
cess patterns in forall loops, (2) determining whether the loop that
contains the candidate has a valid form and (3) detecting whether
the data to be prefetched is a record and if so, which fields will be
accessed. The details of each of these steps will be described below.

2.2.1 Identifying Candidate Memory Access Patterns. Static analy-
sis begins by identifying potential candidates for prefetching, where
these candidates must be contained inside of forall loops. How-
ever, the candidate can be nested within a for loop that is itself
nested in a forall loop. The optimization specifically targets ir-
regular reads and looks for indirect access patterns of the form
A[B[i]], where A and B are arrays and A is a distributed array.
More generally, the optimization operates on distributed arrays
that are accessed by an expression that involves another array
access. As prefetching attempts to look ahead some number of
loop iterations, the compiler must be able to guarantee that the
prefetches will be issued to valid memory locations. To address this
restriction, the loop index variable for the loop that contains the
prefetch candidate must be used within the array access expression.
If the candidate access does not use the loop index variable, then
it cannot be prefetched because it is not known how the access
pattern progresses with respect to the loop iterations. Furthermore,
static analysis must ensure that any other variables used within the
candidate’s access expression can be reasoned about with respect to
how the loop progresses. As a result, such variables are required be
read-only within the scope of the loop body, which greatly simpli-
fies the analysis that is required to ensure the prefetches are issued
to valid array locations.

2.2.2 Determining Valid Loop Forms. A majority of the static anal-
ysis performed for the prefetching optimization involves ensuring
that the loop that contains the prefetch candidate has a valid form. In
this case, valid means that the compiler can statically reason about
how the loop iterations progress. This is important for prefetching
because the optimization needs to ensure that prefetches will not
be issued to invalid memory addresses (e.g., beyond the end of the
array). A valid loop has one of the following forms: (1) the loop
iterates over an array (forall elem in Arr), (2) the loop iterates
over a domain (forall i in Arr.domain), or (3) the loop iterates
over a range (forall i in 0..4). For each of these three forms,
the optimization also supports loops with explicit strides (forall
i in 0..4 by 2). Such forms are required because they enable
the optimization to determine the first and last value of the loop
index, the stride of the loop and the number of loop iterations. This
information is crucial for the code transformations that will be
discussed in Section 2.3.

2.2.3 Detecting Record Field Accesses. A particular use-case that
appears often in irregular Chapel programs is performing a remote
read like A[B[i]] where A stores records (i.e., C structs). In this
case, different fields of the record could be accessed in subsequent
statements. This complicates prefetching because a single prefetch
is not guaranteed to fetch all of the accessed fields if they are not
adjacent to each other in the record’s definition. While the number
of bytes to prefetch can be specified when issuing the prefetch, it
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is not practical to do so in some cases where there are many fields
(i.e., bytes) between the desired fields. A better approach is to issue
separate prefetches for each field that is accessed in the loop. To
enable separate prefetches, static analysis is used to detect whether
A stores records, and which fields are accessed in the loop. Once it
is determined that A stores records, the static analysis will look for
any expression that uses the retrieved element and determine which
field is accessed. Interprocedural analysis is used to identify field
accesses where the retrieved element is passed in as an argument
to a procedure. A list of these fields is stored internally within the
compiler and used during the code transformation to generate the
prefetch calls.

2.3 Code Transformations
The code transformations performed by the compiler for the adap-
tive remote prefetching optimization have the following steps: (1)
creating prefetch-related variables, (2) creating compile time checks,
(3) creating the prefetch distance adjustment check and (4) creating
the prefetch procedure call. Listing 1 presents an example forall
loop that contains a valid prefetch candidate (line 3), followed by
code that is equivalent to the output of the code transformations2.
As each core on a locale has its own remote cache, prefetching
is performed per-task, resulting in each task receiving its own
prefetch distance that is adjusted independently from the other
tasks created by the forall loop. In this section, B.domain and i
from Listing 1 will be referred to as the loop iterand and loop index
variable, respectively.

1 // Original forall loop

2 forall i in B.domain {

3 C[i] = A[B[i]];

4 }

5

6 // Transformed forall loop

7 reset_prefetch_counters ();

8 const last = getLastLoopIndex(B.domain);

9 const first = getFirstLoopIndex(B.domain);

10 const stride = getLoopStride(B.domain);

11 const adjIters = getAdjIters(first , last , stride);

12 forall i in B.domain with (var d=8, var cnt=0) {

13 if isPrefetchSupported(B.domain , A, B) {

14 if cnt < adjIters {

15 cnt += 1;

16 }

17 else {

18 adjustPrefetchDistance(d);

19 cnt = 0;

20 }

21 if (i + (d * stride)) <= last {

22 prefetch(A[B[i+(d*stride)]]);

23 }

24 }

25 C[i] = A[B[i]]; // original access

26 }

Listing 1: Example of a prefetch candidate and the
resulting code transformations applied by the compiler.
C[i] = A[B[i]] is the prefetch candidate.

2We do not perform source-to-source compilation. The code transformations modify
the internal representation of the program before the executable is created

2.3.1 Create Prefetch Variables. The first step for the code transfor-
mations is to create several variables that are used to compute the
bounds of the prefetches and when to perform the prefetch distance
adjustments. These variables are on lines 8–11 in Listing 1. All of
these variables are declared as const, since they do not change
throughout the loop iterations, and they rely on extracting informa-
tion from the loop’s iterand at runtime via Chapel procedures that
were written for this optimization. Rather than explaining their
definitions and uses up front, it will be easier to provide details
within the context of their use throughout the code transformations
below.

2.3.2 Create Compile Time Check. Line 13 in Listing 1 performs a
compile time check to ensure that prefetching is valid. The proce-
dure isPrefetchSupported() returns true if the loop iterand is not
an associative domain/array and if A and B are arrays. Associative
arrays/domains do not store their indices in any particular order,
since they function more or less like dictionaries/maps. Therefore,
prefetches cannot be issued with respect to a loop that is yielding
seemingly random values for the loop index variable (i.e., the opti-
mization cannot infer the progression of the loop index variable).
As this check is performed at compile time, the compiler will auto-
matically remove the branch that is not taken. In other words, if
prefetching cannot be supported, then all of the code transforma-
tions that appear within the then-branch of the if statement will be
removed.

2.3.3 Create Prefetch Distance Adjustment Check. Lines 14–20 in
Listing 1 perform the check that determines when to adjust the
prefetch distance. Each task executing the forall loop is given its
own variables cnt and d (line 12). The cnt variable is initialized to 0
and is used to determine when to adjust the task’s prefetch distance
d, which is initialized to 8. The choice of the initial prefetch distance
value is important for non-adaptive approaches, but our optimiza-
tion will adjust the distance as the program executes. Therefore, an
initial value of 8 is chosen as a reasonable starting point (i.e., not
too small or too large). For each loop iteration that a task executes,
it increments cnt (line 15) until it reaches the value of adjIters, at
which point the optimization will adjust the prefetch distance (line
18). The actual calculation of adjIters will be described in Sec-
tion 2.4, but it relies on knowing the number of iterations that the
loop will execute, which itself relies on knowing the first and last
valid value of the loop index variable and the stride of the loop.
These are extracted by the procedure calls on lines 8–10 in Listing 1.

2.3.4 Create Prefetch Call. The final step of the code transforma-
tions is to generate the call to actually perform the prefetching,
as well as the bounds check to ensure that the prefetch will not
be beyond the bounds of the array. One way to perform bounds
checking is to check whether the desired index is contained within
the array’s domain, which can be performed via the .contains()
method on the array’s domain. However, this is unnecessarily ex-
pensive. A better approach is to simply check whether the desired
index is greater than the last valid value of the loop index variable.
Assuming that every value that the loop index variable takes on
throughout the iterations yields a valid array access (which is the
responsibility of the programmer), this check is less costly. Line 21
in Listing 1 performs this bounds check. After the bounds check,
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the prefetch call itself can be constructed (line 22), which takes in
the address/element to prefetch and then issues a call to Chapel’s
runtime to perform the remote cache prefetch. Finally, if the static
analysis determines the target array A stores records, then the com-
piler will transform the code to issue prefetches specifically to the
record fields that are accessed inside the loop. It is worth noting
that the index into the target array (e.g., B[i] in Listing 1) is not
explicitly prefetched by our optimization. Chapel’s remote cache
will automatically read ahead for this type of sequential access
pattern.

2.3.5 Modifying Loop Iterator. While not demonstrated in Listing 1,
our optimization can also correctly handle forall loops that iterate
over arrays, such as forall elem in Arr. In order to do so, the
loop iterator must be modified to ensure that it yields a loop index
variable that can be used for prefetching. In the case of iterating
over an array, the goal of prefetching is to “compute” the address
for a future element of the array that the loop will yield. However,
this cannot be done by offsetting elem by the prefetch distance.
Instead, we need to determine the corresponding index of elem
within Arr and offset that by the prefetch distance. In order to do
this, the compiler will modify the forall loop’s iterator to yield
both elem and its index in Arr. With this index, proper prefetches
can be issued.

2.4 Adjusting Prefetch Distance
Beyond static analysis and code transformations, a crucial com-
ponent of the adaptive prefetching optimization is adjusting the
prefetch distance(s) as the loop executes. There are several motivat-
ing reasons for automatically adjusting the prefetch distance. First,
the “best” prefetch distance is determined by a variety of factors
that change across different systems, applications and even input
data. Examples of these factors include the latency of the system
interconnect, the nature of the irregular memory access patterns in
the application and the underlying sparsity structure of the input
data. Additionally, within a single execution of an application on a
system, the prefetch distance that provides the best performance
may vary depending on how the memory access pattern changes
over time. Finally, within Chapel each core/task has its own remote
cache, and therefore its own prefetch distance. Even on systems
with a modest number of nodes and cores per node, this results in
an overwhelming number of distances to manage by hand.

To address these issues, our optimization employs a heuristic
that adjusts the prefetch distances based on the observed timeli-
ness of the prefetches. This is accomplished by adding per-core
counters to Chapel’s remote cache that keep track of the number
of prefetches issued, how many were late (not completed by the
time the data was needed) and how many were early (evicted from
the cache before being used). The existing CommDiagnostics coun-
ters for these metrics are not sufficient because they are per-locale
and atomic, resulting in unacceptable overhead when the program
issues a significant number of prefetches3.

There are two main considerations for the prefetch distance
adjustment heuristic: (1) how often to adjust the distances, and

3It is noted that the first author of this proposal implemented and contributed the
per-locale atomic counters to Chapel in preparation for this optimization. However,
they had to be modified as described to be practical for the optimization.

(2) how to adjust the distances. For (1), this is determined by the
calculation of adjIters on line 11 in Listing 1. The procedure
getAdjIters() considers how many iterations of the loop will
be assigned to each task and then computes a fraction of those
iterations using a tunable parameter referred to as the sample ratio.
Through sensitivity studies across different workloads and systems,
we found a sample ratio of 0.01 performs best. This means that if a
task is assigned 10,000 iterations then it will attempt to adjust its
prefetch distance every 100 iterations.

With respect to (2), the heuristic looks exclusively at the per-
centage of prefetches that were marked as late. If this percentage is
above a threshold, then the prefetch distance is increased by one to
allow for more time to elapse between the prefetch call and the data
access. If the percentage is below the threshold, and has remained
as such for a specified number of adjustment intervals (i.e., calls
to adjustPrefetchDistance()), then the distance is decreased
by one. This prevents the prefetches from being issued too early,
which can lead to cache pollution. The late prefetch tolerance and
the number of adjustment intervals before decreasing the distance
are also tunable parameters that we chose via sensitivity studies.
Their values were chosen as 10% and 8, respectively.

Focusing on late prefetches rather than early prefetches allows
for more accurate adjustments to the prefetch distance. This was
noted by Heirman et al. [9], which is the work we based our adjust-
ment heuristic on. A late prefetch still represents a useful prefetch,
in the sense that some of the communication latency is hidden. Fur-
thermore, a small adjustment to the distance is likely to improve the
timeliness of the prefetch. On the other hand, early prefetches are
harder to respond to without specific information about how early
the prefetches were. Instrumenting the remote cache to provide
that level of information would be difficult and likely require the
use of timestamps.

3 PERFORMANCE EVALUATION
To evaluate the performance of our adaptive prefetching optimiza-
tion, we implemented a set of irregular workloads in Chapel, namely
Single Source Shortest Path (SSSP), PageRank, Sparse Matrix Vector
Multiply (SpMV) and index gather 4. All of these workloads are
written using the high productivity features of Chapel/PGAS. We
execute these workloads on three different systems, each with a
different network interconnect and different CPUs/number of cores.

Our results show that runtime performance improvements as
large as 3.2x can be achieved on these workloads across the different
systems, demonstrating the effectiveness of the optimization as well
as its portability across different hardware platforms. Furthermore,
since the optimization is applied automatically via the compiler,
developer productivity is drastically improved by not requiring
any modifications to the programs. Additionally, we compared the
performance of the adaptive optimization versus choosing an initial
distance and keeping it fixed throughout the program. We found
that performance when not adapting the distance can be up to
1.44x slower when compared to adapting the distance. In regards
to compilation time, we do not observe any noticeable overhead
due to our static analysis and code transformations.

4https://github.com/jdevinney/bale
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