Automatic Adaptive Prefetching for
Fine-grain Communication in Chapel

$

Thomas B. Rolinger (UMD/LPS), Alan Sussman (UMD)

Contact: tbrolin@cs.umd.edu
CHIUW 2023

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

The Laboratory for Physical Sciences

Motivation: Fine-grain Communication

1 forall v in G {

2 var val = 0.0;

3 const ref neighbors = v.neighbors;

4 for i in neighbors.domain {

5 ref t = G[neighbors[i]];

3 val += t.pr_read / t.out_degree;

7}

8 v.pr_write = (val * d) + ((1.0-d)/num_vertices);
9

}

PageRank (graph analytic)
Shared- and distributed-memory parallel

Motivation: Fine-grain Communication

1
2
3
4
5
6
7
8
9

forall v in G {

}

var val = 0.09;
const ref neighbors = v.neighbors;

for 1 in neighbors.domain
ref t =|G[neighbors[i]];| <

val += t.pr_read / t.out_degree;

}

v.pr_write = (val * d) + ((1.0-d)/num_vertices);

PageRank (graph analytic)
Shared- and distributed-memory parallel

Irregular memory access to
distributed array = fine-grain
communication (i.e., small messages
sent over network)

This memory access pattern also
found in some scientific applications

Motivation: Fine-grain Communication

1 forall v in G { "
2 var val = 0.0; g-
3 const ref neighbors = v.neighbors; S
4 for i in neighbors.domain { 8
5 ref t = G[neighbors[i]]; a
6 val += t.pr_read / t.out_degree; g
7 } .E
8 v.pr_write = (val * d) + ((1.0-d)/num_vertices); =
9 }

PageRank (graph analytic)
Shared- and distributed-memory parallel

PageRank: Runtime Scalability

3
2
1 = = — —0— —o
0
2 4 8 16 32
of locales

-e-Baseline

Motivation: Fine-grain Communication

1
2
3
4
5
6
7
8
9

}

forall v in G {

PageRank: Runtime Scalability

var val = 0.9; é} 3
const ref neighbors = v.neighbors; S
for i in neighbors.domain { 8 2

ref t = G[neighbors[i]]; 3

val += t.pr_read / t.out_degree; “E" 1 o— —o— o———0— —0
} =
v.pr_write = (val * d) + ((1.0-d)/num_vertices); g 0

2 4 8 16 32
PageRank (graph analytic) # of locales

Shared- and distributed-memory parallel -e-Baseline

Fine-grain communication leads to excessive stalls waiting for data
to arrive over the network

High productivity does not always lead to good performance

Motivation: Fine-grain Communication

Can we achieve better performance for these types of
codes in Chapel WITHOUT losing productivity?

Outline

* Optimization: Adaptive Remote Prefetching

* Implementation within compiler:
 Static analysis and code transformations

 Performance evaluation:

* PageRank
e SSSP

Outline

* Optimization: Adaptive Remote Prefetching

Adaptive Remote Prefetching

* What is prefetching?

* hide communication latency by overlapping it with other
communication/computation

* issue non-blocking reads for remote data that will be needed in the future

Adaptive Remote Prefetching

* What is prefetching?

* hide communication latency by overlapping it with other
communication/computation

* issue non-blocking reads for remote data that will be needed in the future

1 forall i in ... { no prefetching
SR el] stan] el
3}

=0, fetch A[B[0]] i =1, fetch A[B[1]] i = 2, fetch A[B[2]]

indirect/irregular access pattern

Adaptive Remote Prefetching

* What is prefetching?

* hide communication latency by overlapping it with other
communication/computation

* issue non-blocking reads for remote data that will be needed in the future

1 forall i in ... { no prefetching
SR el] stan] el
3}

=0, fetch A[B[0]] i =1, fetch A[B[1]] i = 2, fetch A[B[2]]

indirect/irregular access pattern

prefetching

—
i =0, fetch A[B[O]] i =1, fetch A[B[1]] i =2, fetch A[B[2]]

prefetch A[B[2]] cache hit

Adaptive Remote Prefetching

* What is prefetching?

* hide communication latency by overlapping it with other
communication/computation

* issue non-blocking reads for remote data that will be needed in the future

1 forall i in ... { no prefetching
SR el] stan] el
3}

=0, fetch A[B[0]] i =1, fetch A[B[1]] i = 2, fetch A[B[2]]

indirect/irregular access pattern

prefetching

. e ———————————
prefetch distance of 2 i =0, fetch A[B[0]] i =1, fetch A[B[1]] i =2, fetch A[B[2]]

— prefetch A[B[2]] cache hit

Adaptive Remote Prefetching

* What is prefetching?

* hide communication latency by overlapping it with other
communication/computation

* issue non-blocking reads for remote data that will be needed in the future

* What are we prefetching into?
e Chapel’s remote cache
* Each core (task) on a locale has its own software managed remote cache

* As aresult, each task has its own prefetch distance that must be determined
independently from other other tasks

Adaptive Remote Prefetching (cont.)

* How to pick a “good” prefetch distance: A[B[i+?7?]]

* Very difficult to statically pick for a given workload/dataset > memory access
patterns change throughout the program

* The "best” value will often be different across applications, datasets and
systems

Adaptive Remote Prefetching (cont.)

* How to pick a “good” prefetch distance: A[B[i+?7?]]

* Very difficult to statically pick for a given workload/dataset > memory access
patterns change throughout the program

* The "best” value will often be different across applications, datasets and
systems

* Solution: adaptive prefetching
* Adapt (increase/decrease) the prefetch distance as the program executes

* Uses runtime information about the memory access pattern and effectiveness
of the prefetches issued thus far

* how many prefetches were issued? how many were late?

Outline

* Implementation within compiler:
 Static analysis and code transformations

Implementation within Compiler

 Static analysis
* Automatically identifies potential fine-grain communication in forall loops
 Specifically looks for A[B[i]] patterns where A is a distributed-array

e Ensures that we can reason about how the loop iterations progress (important
for bounds checking)

Implementation within Compiler

 Static analysis
* Automatically identifies potential fine-grain communication in forall loops
 Specifically looks for A[B[i]] patterns where A is a distributed-array

e Ensures that we can reason about how the loop iterations progress (important
for bounds checking)

* Code transformations
* Creates variables for bounds checking, the prefetch distances, etc.
* |Inserts bounds checking around prefetch
* Adds code to periodically adjust the prefetch distances
* Generates prefetch call to remote cache

Implementation within Compiler

Take away: Applying this optimization manually
decreases productivity

Outline

 Performance evaluation:

* PageRank
e SSSP

Experimental Setup

 Workloads: PageRank and SSSP

Data sets

Name # Vertices | # Edges | Density (%)
scale-24 16M 536 M 1.9e—4
scale-25 33M 1B 9.5e—5
scale-26 67M 2B 4.8e—5
arabic-2005 23M 631M 1.2e—4
webbase-2001 118M 992M 7.1e—6
GAP-twitter 61M 1.5B 3.9e—5
sk-2005 50M 2B 7.5e—5
MOLIERE 2016 30M 6.6B 7.3e—4

PageRank kernel

forall v in G {

var val = 0.0;
const ref neighbors = v.neighbors;
for i in neighbors.domain {

ref t = G[neighbors[i]];

val += t.pr_read / t.out_degree;

}

v.pr_write = (val * d) + ((1.0-d)/num_vertices);

SSSP main kernel

forall u in cq {
foreach i in G[u].neighbors.domain {

const v_weight = G[u].weights[i];
if (v_weight < delta) {

const w = G[u].dist + v_weight;
ref v = G[neighbors[i]];
if (v.dist < O || v.dist > w) {
v.dist = w;
if (!'v.visited && w < max_delta) {
v.visited = true;
nextQs [G[v.id].locale.id] += idx;
}
}

21

Experimental Setup (cont.)

* Platforms: Three different distributed-memory systems

Name

CPUs

Cores/node

Memory/node

Interconnect

FDR-IB
HDR-IB
Cray XC

Intel Xeon E5-2650
AMD EPYC 7763
Intel Xeon E5-2699

20
16
11

512 GB
64 GB
128 GB

FDR Infiniband
HDR Infiniband
Cray Aries

22

(o))

£ PageRank: MOLIERE_2016

3 : 3.2

3 2.6

= 2.3 2.3 21
3 2 1.9

{ 1 I I I I I I
2 1
ge)

s I

o 0

2
H nodes

()]

= SSSP: scale-26

o 3

©

0

1.7

o 1.4 1.4

o 1.3 1.3 1.3 14 1.4 11 13 ., .
Q.

? l l NN
E; 0

o 16

(7]

nodes

H FDR-IB B HDR-IB B Cray XC

speed-up over baseline

speed-up over baseline

©O = N W &,

1

PageRank: MOLIERE_2016

23 2.3

H nodes

2

SSSP: scale-26

3i [i14 I
nodes

H FDR-IB B HDR-IB B Cray XC

2.6
I 2.1

111

Speed-ups as high as 3.2x and
1.7x

Results: Is Adapting the Distance Helping?

Results: Is Adapting the Distance Helping?

SSSP on scale-26 graph

distance used # prefetches

1 1 10 20 30 40 (millions)
-7

-6
-5
-4

3

[ERY

26

Results: Is Adapting the Distance Helping?

SSSP on scale-26 graph

distance used # prefetches
1 10 20 30 40 (millions)
1 -7
20 -6
. 40
different tasks/cores across the -5

system — each has their own 60

cache/prefetch distance -4

80

task ID

100

120

140

[ERY

160
\

27

Results: Is Adapting the Distance Helping?

different values of the prefetch A
distance used
distance used # prefetches
1 10 20 30 40 (millions)
1 -7
20 -6
4
0 -5
A 60
x -4
2 80
3
100
120 2
140 1
160

28

Results: Is Adapting the Distance Helping?

Most cores/tasks favor a prefetch SSSP on scale-26 graph
distance of 12 distance used # prefetches
1 10 20 30 40 (millions)
1 -7
20 -6
40
-5
A 60
> -4
3 80
3
100
120 2
140 1
160

29

Results: Is Adapting the Distance Helping?

Prefetch Distance Usage Patterns — PageRank on scale-26 graph

distance sed distance used

distance used

more
prefetches

task ID
task ID

Different patterns across
workloads and systems

FDR Infiniband HDR Infiniband Cray XC

changing environments

distance used

distance used distance used

task ID

| — distances are adapting to
Prefetch Distance Usage Patterns — SSSP on scale-26 graph I
less

Cray XC

prefetches
FDR Infiniband HDR Infiniband

30

Results: Is Adapting the Distance Helping?

Prefetch Distance Usage Patterns — PageRank on scale-26 graph

distance sed distance used

distance used

more

E
- 2 prefetches
[} a
Manually picking a “good” distance
= S— offline and use that throughout the
FDR Infiniband HDR Infiniband Cray XC .
entire program:
Prefetch Dist U Patt - SSSP le-26 h
dir:anececused s sagedi:anceer::d one edistafc:a:s’ed ° up to 44% Worse performance
vs. adapting the distance
a
less
prefetches

FDR Infiniband HDR Infiniband

Cray XC

31

Discussion and Future Work

* More sophisticated heuristics to adjust the distance

* Auto-tuning to intelligently select the tunable parameters
 How often to adjust distance, tolerance of late prefetches

 Evaluate more architectures/systems/workloads

Summary

runtime speed-ups

PageRank: Runtime Scalability

better performance -- how?
adaptive prefetching

—O
poor performance -- why? /A(k
fine-grain remote communication
2 4 8 16 32

of nodes
-e-Baseline -o-Optimized

33

