
Automatic Adaptive Prefetching for
Fine-grain Communication in Chapel

Thomas B. Rolinger (UMD/LPS), Alan Sussman (UMD)

CHIUW 2023
Contact: tbrolin@cs.umd.edu

2

Motivation: Fine-grain Communication

PageRank (graph analytic)
Shared- and distributed-memory parallel

PageRank (graph analytic)
Shared- and distributed-memory parallel

3

Motivation: Fine-grain Communication

Irregular memory access to
distributed array à fine-grain
communication (i.e., small messages
sent over network)

This memory access pattern also
found in some scientific applications

4

PageRank (graph analytic)
Shared- and distributed-memory parallel

0

1

2

3

2 4 8 16 32

ru
nt

im
e

sp
ee

d-
up

s

of locales

PageRank: Runtime Scalability

Baseline

Motivation: Fine-grain Communication

5

Fine-grain communication leads to excessive stalls waiting for data
to arrive over the network

High productivity does not always lead to good performance

PageRank (graph analytic)
Shared- and distributed-memory parallel

0

1

2

3

2 4 8 16 32

ru
nt

im
e

sp
ee

d-
up

s

of locales

PageRank: Runtime Scalability

Baseline

Motivation: Fine-grain Communication

Fine-grain communication leads to excessive stalls waiting for data
to arrive over the network

High productivity does not always lead to good performance 6

PageRank (graph analytic)
Shared- and distributed-memory parallel

0

1

2

3

2 4 8 16 32

ru
nt

im
e

sp
ee

d-
up

s

of locales

PageRank: Runtime Scalability

Baseline

Motivation: Fine-grain Communication

Can we achieve better performance for these types of
codes in Chapel WITHOUT losing productivity?

• Optimization: Adaptive Remote Prefetching
• Implementation within compiler:
• Static analysis and code transformations

• Performance evaluation:
• PageRank
• SSSP

7

Outline

• Optimization: Adaptive Remote Prefetching
• Implementation within compiler:
• Static analysis and code transformations

• Performance evaluation:
• PageRank
• SSSP

8

Outline

• What is prefetching?
• hide communication latency by overlapping it with other

communication/computation
• issue non-blocking reads for remote data that will be needed in the future

9

Adaptive Remote Prefetching

• What is prefetching?
• hide communication latency by overlapping it with other

communication/computation
• issue non-blocking reads for remote data that will be needed in the future

10

indirect/irregular access pattern

i = 0, fetch A[B[0]] i =1, fetch A[B[1]]

stall stall stall
no prefetching

i = 2, fetch A[B[2]]

Adaptive Remote Prefetching

• What is prefetching?
• hide communication latency by overlapping it with other

communication/computation
• issue non-blocking reads for remote data that will be needed in the future

11

indirect/irregular access pattern

i = 0, fetch A[B[0]] i =1, fetch A[B[1]]

stall stall stall
no prefetching

i = 2, fetch A[B[2]]

i = 0, fetch A[B[0]]
prefetch A[B[2]]

i =1, fetch A[B[1]]

stall stall

prefetching

i = 2, fetch A[B[2]]
cache hit

Adaptive Remote Prefetching

• What is prefetching?
• hide communication latency by overlapping it with other

communication/computation
• issue non-blocking reads for remote data that will be needed in the future

12

indirect/irregular access pattern

i = 0, fetch A[B[0]] i =1, fetch A[B[1]]

stall stall stall
no prefetching

i = 2, fetch A[B[2]]

i = 0, fetch A[B[0]]
prefetch A[B[2]]

i =1, fetch A[B[1]]

stall stall

prefetching

i = 2, fetch A[B[2]]
cache hit

prefetch distance of 2

Adaptive Remote Prefetching

13

• What is prefetching?
• hide communication latency by overlapping it with other

communication/computation
• issue non-blocking reads for remote data that will be needed in the future

• What are we prefetching into?
• Chapel’s remote cache
• Each core (task) on a locale has its own software managed remote cache
• As a result, each task has its own prefetch distance that must be determined

independently from other other tasks

Adaptive Remote Prefetching

14

• How to pick a “good” prefetch distance: A[B[i+??]]
• Very difficult to statically pick for a given workload/dataset à memory access

patterns change throughout the program
• The ”best” value will often be different across applications, datasets and

systems

Adaptive Remote Prefetching (cont.)

15

• How to pick a “good” prefetch distance: A[B[i+??]]
• Very difficult to statically pick for a given workload/dataset à memory access

patterns change throughout the program
• The ”best” value will often be different across applications, datasets and

systems

• Solution: adaptive prefetching
• Adapt (increase/decrease) the prefetch distance as the program executes
• Uses runtime information about the memory access pattern and effectiveness

of the prefetches issued thus far
• how many prefetches were issued? how many were late?

Adaptive Remote Prefetching (cont.)

• Optimization: Adaptive Remote Prefetching
• Implementation within compiler:
• Static analysis and code transformations

• Performance evaluation:
• PageRank
• SSSP

16

Outline

• Static analysis
• Automatically identifies potential fine-grain communication in forall loops
• Specifically looks for A[B[i]] patterns where A is a distributed-array
• Ensures that we can reason about how the loop iterations progress (important

for bounds checking)

17

Implementation within Compiler

• Static analysis
• Automatically identifies potential fine-grain communication in forall loops
• Specifically looks for A[B[i]] patterns where A is a distributed-array
• Ensures that we can reason about how the loop iterations progress (important

for bounds checking)

• Code transformations
• Creates variables for bounds checking, the prefetch distances, etc.
• Inserts bounds checking around prefetch
• Adds code to periodically adjust the prefetch distances
• Generates prefetch call to remote cache

18

Implementation within Compiler

• Static analysis
• Automatically identifies potential fine-grain communication in forall loops
• Specifically looks for A[B[i]] patterns where A is a distributed-array
• Ensures that we can reason about how the loop iterations progress (important

for bounds checking)

• Code transformations
• Creates variables for bounds checking, the prefetch distances, etc.
• Inserts bounds checking around prefetch
• Adds code to periodically adjust the prefetch distances
• Generates prefetch call to remote cache

19

Implementation within Compiler

Take away: Applying this optimization manually
decreases productivity

• Optimization: Adaptive Remote Prefetching
• Implementation within compiler:
• Static analysis and code transformations

• Performance evaluation:
• PageRank
• SSSP

20

Outline

• Workloads: PageRank and SSSP

21

Experimental Setup

Data sets

PageRank kernel

SSSP main kernel

22

Experimental Setup (cont.)

• Platforms: Three different distributed-memory systems

CMSC818J | Domain Specific Architectures | Thomas Rolinger

0.8
1.3 1.4 1.4 1.31.3 1.3 1.4

1.7
1.1

1.4 1.4 1.1 1.1 1

0

1

2

3

2 4 8 16 32sp
ee

d-
up

 o
ve

r b
as

el
in

e

nodes

SSSP: scale-26

1
1.4

2.1 2.3
2.6

1.8 1.6
2 2.3

3.2

2.2
1.9 2 2 2.1

0

1

2

3

4

2 4 8 16 32sp
ee

d-
up

 o
ve

r b
as

el
in

e

nodes

PageRank: MOLIERE_2016

CMSC818J | Domain Specific Architectures | Thomas Rolinger

0.8
1.3 1.4 1.4 1.31.3 1.3 1.4

1.7
1.1

1.4 1.4 1.1 1.1 1

0

1

2

3

2 4 8 16 32sp
ee

d-
up

 o
ve

r b
as

el
in

e

nodes

SSSP: scale-26

1
1.4

2.1 2.3
2.6

1.8 1.6
2 2.3

3.2

2.2
1.9 2 2 2.1

0

1

2

3

4

2 4 8 16 32sp
ee

d-
up

 o
ve

r b
as

el
in

e

nodes

PageRank: MOLIERE_2016

Speed-ups as high as 3.2x and
1.7x

25

Results: Is Adapting the Distance Helping?

26

Results: Is Adapting the Distance Helping?

27

Results: Is Adapting the Distance Helping?

different tasks/cores across the
system – each has their own
cache/prefetch distance

28

Results: Is Adapting the Distance Helping?
different values of the prefetch
distance used

29

Results: Is Adapting the Distance Helping?
Most cores/tasks favor a prefetch
distance of 12

30

Results: Is Adapting the Distance Helping?

Different patterns across
workloads and systems

à distances are adapting to
changing environments

31

Results: Is Adapting the Distance Helping?

Manually picking a “good” distance
offline and use that throughout the
entire program:
• up to 44% worse performance

vs. adapting the distance

• More sophisticated heuristics to adjust the distance
• Auto-tuning to intelligently select the tunable parameters
• How often to adjust distance, tolerance of late prefetches

• Evaluate more architectures/systems/workloads

32

Discussion and Future Work

33

Summary

0
0.5

1
1.5

2
2.5

3
3.5

2 4 8 16 32

ru
nt

im
e

sp
ee

d-
up

s

of nodes

PageRank: Runtime Scalability

Baseline Optimized

better performance -- how?
adaptive prefetching

poor performance -- why?
fine-grain remote communication

