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EXTENDED ABSTRACT extension) but rather a fundamental language token. A funda-

We present our initial experiences in porting a GPU graph-
analysis workload to Chapel. This endeavor is part of a
broader study to characterize the performance-productivity
tradeoffs of Chapel’s new native support for compiling loops
for GPU execution. We discuss the motivation for migrating
to Chapel, provide an introduction to our proxy workload
known as edge-connected Jaccard similarity, and briefly dis-
cuss code migration issues and preliminary performance
observations.

Introduction

The plateauing of frequency scaling and the increasing com-
monality of computationally-intensive workloads, such as
machine learning and big-data analysis, have driven an ex-
plosion of both multi- and many-core parallelism, not just
in the datacenter but also under the desk, at home, and on
the go. Most cell phones are not only multi-core, but in-
clude additional accelerator engines for different workloads
including graphics and digital signal processing. Even the
smallest, $15 USD Raspberry Pi micro-computer is a quad-
core! [2]. Laptops, desktops, workstations, and servers have
been multi-core with various available accelerator engines
for decades.

Such pervasive parallelism suggests a need to rethink how
we write new software, maintain old software, and teach new
programmers. At present, the most popular programming
languages, according to the 2022 IEEE Spectrum analysis [7],
are Python, C, C++, C#, and Java, none of which include
fundamental tokens to express parallelism natively. In the
high-performance computing (HPC) community, the pre-
dominant languages pre-date ubiquitous parallelism, namely
C, C++ and Fortran. However, they do support opt-in par-
allelism through some combination of libraries, pragmas,
extensions, or third-party frameworks.

Given the ubiquity of parallelism in computing, it be-
hooves us to start using natively parallel languages, where
parallelism is not an optional feature (e.g., library / pragma /

mental element is available from day zero of using a language,
not a separate element gate-kept by a complicated installa-
tion or a tome of documentation, but as adjacent as simply
adding “all” or “each” to your existing for loops. Natively
parallel languages like Chapel provide this opportunity to
re-envision the development process with parallelism as a
first-class citizen, instead of something tacked on later.

GPU Programming

Even with natively parallel languages, there are limits to the
performance achievable with traditional multi-core CPUs,
which deliver performance through instruction-level pipelin-
ing (ILP). speculative execution, and modest parallelism.
Thus, accelerators, whether as discrete chips or integrated
with the CPU, have surged in popularity. In particular, general-
purpose GPU (GPGPU) computations have become common-
place in both datacenter- and user-scale workloads.

However, with special-purpose accelerators comes the
question of how to program them. Shader languages for
GPUs have existed for decades, but expressing computational
algorithms in them is cumbersome. In the late 2000s, Nvidia
introduced the CUDA language extensions and toolkit [1]
for C and Fortran, which has garnered dominant market
share over the subsequent years. The OpenCL standard [18]
emerged shortly after, to provide a portable abstraction across
accelerator vendors and platforms, i.e., not just GPU but
also CPU, FPGA, and others. In addition, there have been
attempts to extend pragma-based parallelism to accelerators,
such as OpenMP 4+ [4] and OpenACC [3]. More recently, the
SYCL standard has emerged to provide a portable, modern
C++-based abstraction for parallel computations. However,
these are fundamentally add-ons to existing natively serial
languages. Broadly speaking, one does not encounter parallel
language elements, like collaborative thread blocks, until you
get inside the GPU kernel, well after investing manual effort
to install the SDK, select and initialize a device, allocate
memory on it, and stage data into its memory.



GPUs in Chapel. In contrast, what could GPU computing look
like within a language that is already natively parallel? Cha-
pel has strong C interoperability, so one approach leverages
CPU-side wrappers around traditional C/C++-based GPGPU
languages and APIs [12-14]. However, this requires depart-
ing the Chapel ecosystem to install and learn the lower-level
languages, discarding many of the productivity benefits of
Chapel. Thus, we focus on efforts to support native Chapel
codes’ execution on GPUs.

One of the earliest attempts to demonstrate CUDA code
generation from Chapel [21] dates as far back as 2012. More
recently, AMD demonstrated efforts to support Chapel ex-
ecution for their GPUs via the ROCm compute layer and
Chapel-to-OpenCL conversion [9]. An independent effort
also generated OpenCL from Chapel for just-in-time compi-
lation in support of a GPUArrays library [11].

Chapel introduced native GPU support in version ~1.26 [17]
(with some features available earlier). Chapel’s GPU support
has continued to improve with each subsequent release. More
recently, Chapel 1.30 delivered further performance improve-
ments, resulting in nearly identical performance to CUDA
for some workloads [8]. This work is primarily based on the
same 1.30 release.

Graph Workload

To evaluate the efficacy of Chapel 1.30’s native GPU support,
we consider a graph analysis workload called edge-connected
Jaccard similarity (JS), which serves as proxy for more com-
plicated, neighbor-intersection algorithms.

Jaccard similarity relates the intersection of two sets to
their union, in order to measure the sharedness of the two
sets [15]. That is, for sets A and B, their JS is given by the

equation JS(A, B) = %. A JS of 1 means the two
sets are identical, whereas 0 means the two sets are disjoint,
and anything in between signifies partial overlap. When
applied to graphs, we consider a batch of sets which consist
of the 1-hop neighborhoods of individual vertices. Figure 1
provides a sketch of the relevant components on a trivial
graph. This formulation gives |vertices| neighbor sets, from
which one can compute the JS of different pairs of vertices
depending on the end goal.

e List-based methods can be useful for querying the
relatedness of an arbitrary subset of vertex pairs.

o All-pairs could be used to infer new edges between
vertices with highly-similar neighborhoods, which
could be leveraged for iterative community building.

o The edge-connected variant we are interested in com-
putes JS for all pairs of vertices that are connected
by a 1-hop edge, which can be used for considering
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the strength of existing connections or synthesizing
edge weights for subsequent algorithms.!

(D Neighborhood(A)
E= Neighborhood(B)
Intersection(A,B)

Figure 1: Components of the Edge-Connected Jaccard
similarity

Graphs encompass a major modern workload underlying
artificial intelligence and data analysis pipelines and typi-
cally contain significant latent parallelism. However, it is a
challenge to express and exploit that parallelism to improve
workload performance. Currently, parallel graph analysis is
often performed through library frameworks, which serve
a valuable functional purpose but are rigid and difficult to
adapt if your algorithmic or hardware needs diverge from
what is provided.

Chapel is a good candidate for a higher-level graph pro-
cessing language as it is both natively parallel and natively
distributable. Cluster- and datacenter-scaling with Chapel is
much easier than augmenting a historically-serial language
like C/C++ or Python with both an intra-node parallelism ap-
proach (CUDA, OpenMP, etc.) and an inter-node distribution
approach (MPI, sockets, etc.). Chapel has the performance
benefits of static compilation with intuitive distributable ar-
ray abstractions and fundamental tokens for expressing paral-
lelism and concurrency/distribution - foreach/forall and
coforeach/coforall, respectively. Further, Chapel’s built-
in GPU support leverages the same parallel abstractions that
already exist in the language, which makes introducing het-
erogeneous parallelism (CPU + GPU) easier than tacking on
new libraries and toolchains from traditional GPU program-
ming paradigms like CUDA, OpenCL, HIP, or SYCL.

Porting to Chapel

To consider Chapel’s efficacy as a high-performance GPU
graph analysis language, we need to evaluate its productiv-
ity benefits against any potential GPU performance implica-
tions. As a first step, towards this evaluation we manually
port the CUDA precursor of our SYCL implementation [20].
This precursor includes a bespoke embarrassingly-parallel
edge-centric (EC) implementation and an isolated fork of
the legacy cuGraph implementation [5, 10]. The isolated

The edge-connected formulation can also derive a triangle count as a
byproduct, as any shared neighbor (non-zero numerator) necessarily implies
edges from the two endpoint vertices to the shared neighbor.
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cuGraph pipeline is predominantly vertex-centric (VC) and
leverages CUDA’s 2D and 3D kernel parallelism to collabo-
ratively search for pairwise intersections.?

While other formulations of Jaccard similarity, such as
sparse matrix multiplication [6], have been shown to be
GPU- and distribution-amenable, we utilize our direct imple-
mentation for its familiarity and algorithmic transparency,
which will allow us to perform productivity and performance
comparisons against a known implementation. Provided our
initial foray into GPU-enabled Chapel demonstrates that rea-
sonable productivity and performance is achievable, then
improving wall-clock performance and scalability through
profiler-driven optimization and/or algorithmic adaptation
or refactorization remains as future work.

GPU-ization. We have fully ported both kernel pipelines
to Chapel and found the GPU sub-locale abstraction and
forall intuitive for expressing embarrassingly parallel por-
tions of the workload. The EC pipeline’s 1D embarrassingly
parallel kernels “GPU-ize” straightforwardly to Chapel 1.30
In contrast, we encountered numerous roadblocks when
GPU-izing the VC pipeline. First, the intersection kernel
utilizes a 3D grid/block configuration, mapping the Z-dim-
ension to source vertices, Y-dimension to destination ver-
tices, and X-dimension to a collaborative binary search for
pairwise intersections. Our original Chapel implementation
utilized nested forall statements to map each of the origi-
nal CUDA grid/block dimensions, but because Chapel 1.30
supports only 1D kernels, this nesting of forall statements
forced the compiler to map to CPU. We worked around this
by manually linearizing the thread index space, which, in
turn, required a patch to the Chapel runtime system to sup-
port ultra-high GPU thread counts, which HPE rapidly im-
plemented and integrated upstream [16].

Additionally, the original CUDA uses intra-thread loops
in each dimension to support scaling to arbitrary graph and
neighbor-list sizes in excess of the configured grid/block.
Due to un-GPU-izable safety checks behind the scenes of
Chapel’s optional by clause to specify the forall’s stride,
we replaced these inner loops with equivalent manually-
counted while loops. These two changes provided signifi-
cant performance gain to the transparently CPU-mapped VC
intersection but still did not allow GPU-ization.

Finally, the collaborative X-dimension intersection search
within the VC intersection kernel needs atomic writes to a
global intersection array — but non-atomic reads in a later
kernel. Chapel’s native type-qualified atomics are not yet

2The master branch of CuGraph has evolved since our fork — at version
~0.18, commit SHA 3f13ffcdf- and we make no claim of commonality
with or against any current implementation(s) of JS that it may provide.

GPU-izable, but with guidance from HPE we leveraged Cha-
pel’s C interoperability to directly call CUDA’s native access-
qualified atomics from within the forall. This provided the
last key to unlocking GPU-ization of the VC pipeline. We
were pleased that throughout this process that Chapel was
able to transparently map the GPU-intended forall to the
CPU, supporting validation of their functional portability,®
while we worked to remove barriers to GPU-ization.

Host Code. We also ported the mini-application that wraps
the two kernel pipelines and utilizes a custom binary com-
pressed sparse row (CSR) file format. The format supports
variable-width vertex/edge indices and Jaccard weight array
members (32- vs. 64-bit), described via a fixed-sized header.
Implementing equivalent file I/O in Chapel actually required
more effort than the kernels due to this need to mix runtime-
defined type widths with a statically-compiled parameterized
CSR class representation.

The format’s fixed-size header uses a C++ bitfield of flags
describing the member arrays’ element widths and other
properties. As of 1.30, Chapel lacks a direct analog to C++’s
bitfield, but we emulated that behavior by reading the bitfield
as a 64-bit integer, itemizing its members in an enumerator
and converting to/from a runtime type descriptor record via
binary AND/OR, respectively. A sketch of this is provided in
Fig. 2a. These conversions were encapsulated within class
copy initializers and I/O methods, which ameliorated the
additional code verbosity. The resulting runtime type de-
scriptor is used to create a concrete instance of a generic
CSR class that is parameterized with respect to the member
arrays’ element widths, shown in Fig. 2b.

However, as Chapel is statically typed, we needed to gen-
erate all possible instantiations of the generic CSR class and
supporting generic functions at compile time in order to sup-
port any widths that might be read at runtime. We achieved
this via a “ladder” of overloaded functions that incrementally
translate runtime flags to the correct compile-time concrete
specializations, as shown in Figure 2d.

Finally, in order to pass CSR instances through code re-
gions that could not know their concrete type at compile
time, we implemented a C-like opaque handle type. This
type, shown in Fig. 2c, contains the runtime type descriptor,
used to select the correct specialized functions, and a C void
pointer to the concrete instance. Void pointers are excluded
from the Chapel language by design, but usable through Cha-
pel’s C interoperability module. Combined, these approaches
achieved a rudimentary explicit form of runtime type infor-
mation (RTTTI).

3We consider functional portability to be the minimum baseline of producing
semantically-correct results without regard for achieved wall-clock perfor-
mance Performance portability is the harder goal of semantically-correct
results with similar wall-clock performance / achieved percentage of peak.



1 enum CSR_header_flags {
2 isWeighted= 1 << 0,
3 ... [/l other flags

4 isWeightT64= 1 << 6,
5

6 private param CSR_BIN_FMT_VER: int(64)= 2;

7 record CSR_file_header { //disk format

8 var binFmtVer: int(64)= CSR_BIN_FMT_VER;

9 var numVerts: int(64)= 0;

10 var numEdges: int(64)= 0;

11 var flags: int(64)= 0; //can't binOr Chapel enums
12 proc init=(rhs: CSR_descriptor) {

13 this .numVerts= rhs.numVerts;

14 this .numEdges= rhs.numEdges;

15 ... // binORs to convert bools to flags int
16

17 ... // other req'd operators and casts

18 }

19 record CSR_descriptor { //Runtime type descriptor
20 var isWeighted: bool= false;

21 ... [/ other flags

22 var isWeightT64: bool= false;

23 var numEdges: int(64)= 0;

24  var numVerts: int(64)= 0;

25  proc init=(rhs: CSR_file_header) {

26 assert(rhs.binFmtVer == CSR_BIN_FMT_VER, *‘msg'’);
27 ... // binANDs to convert the flags int to bools
28 this .numEdges= rhs.numEdges;

29 this .numVerts= rhs.numVerts;

30

31 ... //other req'd operators and casts

32}
(a) Chapel enumerator and CSR type-descriptor to emulate a
C++ bitfield and provide runtime type information

1 class CSR {

2 var numEdges: int (64);

3 var numVerts: int(64);

4 param isWeighted: bool;

5 ... // other flags

6 param isWeightT64: bool;

7 //CSR element arrays

8 var iDom: domain(1)= {0..numEdges-1};

9 var indices: [iDom] int(if isVertexT64 then 64 else 32);

10 var oDom: domain(1)= {0..(numVerts)};

11 var offsets: [oDom] int(if isEdgeT64 then 64 else 32);

12 var wDom: domain(1)= {0..(if isWeighted then numEdges-1 else 0)
<> }; //Degenerate w/o weights

13 var weights: [wDom] real(if isWeightT64 then 64 else 32);

14 proc getDescriptor (): CSR_descriptor {
15 ... //runtime copy of param flags
16}

17 ... //reader/writer funcs

18 }

(b) Chapel parameterized generic CSR type

1 record CSR_handle { //Opaque type
2 var desc : CSR_descriptor;

3  var data : c_void_ptr;

4 ... // reader/writer funcs

5

}

(c) Chapel CSR handle opaque type

: CSR_descriptor

1 proc NewCSRHandle (type CSR_type : CSR(?), in desc
> ): CSR_handle {

2 assert( ...); //that desc matches CSR_type

3 var retHandle : CSR_handle;

4 local { // avoid issues w/ GPU-req'd wide pointers

5 var retCSR = new unmanaged CSR_type (...);

6 // Assign all the non-param, non-array fields

7 var retCast = (retCSR : c_void_ptr);

8 retHandle.data = retCast;

9 retHandle . desc = desc;

0}

11 return retHandle;

12 }

13 //* * Ladder '' of progressive runtime-->param resolution

14 // Fully -parameterized final *‘rung'’

15 private proc MakeCSR(in desc : CSR_descriptor, ... ) :CSR_handle {

16  return NewCSRHandle(CSR(isWeighted , isVertexT64 , isEdgeT64 ,

—> isWeightT64), desc);

17 }

18 ... // intermediate rungs for vertex, edge, and weight widths

19 //entrypoint rung for deducing weight presence

20 proc MakeCSR(in desc : CSR_descriptor) :CSR_handle {

21 return (if desc.isWeighted then MakeCSR(desc, true) else MakeCSR

<> (desc, false));

22}

23 //used inside funcs that know the concrete type

24 proc ReinterpretCSRHandle (type CSR_type: unmanaged CSR(?), in
“— handle : CSR_handle) : CSR_type {

25 ... // cast handle.data back to CSR_type w/ type checking

26 }

(d) Operations on CSR opaque type.

Figure 2: Supporting a flexible CSR binary format in
Chapel with C-style explicit runtime type information
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Preliminary Results

We measured the performance of both JS pipelines on 18
graph workloads, the same set as our prior SYCL work [19,
20]. They cover a range of sizes and sparsities but all fit in the
VRAM of our test GPU, a Nvidia RTX 3090 consumer-grade
card, supported by CUDA 11.6, driver 510.108.03. The GPU
kernels, both CUDA and Chapel GPU-ized, were measured
using Nvidia Nsight Compute for driver-level profiling. Un-
GPU-izable intermediate kernels from the VC pipeline were
measured using Chapel’s stopwatch timers around foralls
when executed on the CPU. We considered both Chapel
1.30’s default unified_memory (GPU-accessible, CPU-resi-
dent) and CUDA-like array_on_device (GPU-resident) mem-
ory strategies, but there is enough inherent indirect access
latency that unified memory does not expose significant
slowdown. The CUDA code is exclusively GPU-resident.

Preliminary results indicate the EC pipeline performs
strongly and has a high degree of performance portability.
On some sparser graphs CUDA significantly outperforms
Chapel; but as the density increases, Chapel approaches per-
formance parity. Unexpectedly, there are a few graphs where
Chapel outperforms CUDA, something for future study.

The partially GPU-ized VC pipeline is expectedly under-
whelming due to the CPU mapping of the intersection and
final Jaccard weight kernels. However, once fully GPU-ized,
the VC pipeline’s performance was similar to EC’s: Chapel
slightly underperforms CUDA on the sparsest data but ap-
proaches performance parity at the denser end and even
outperforms CUDA on one dataset!

Future Directions

We plan to continue working to understand and close perfor-
mance gaps between GPU-enabled Chapel and CUDA using
a profiler-driven optimization approach and to feed insights
from that process back to the Chapel development team and
community. Chapel 1.30 introduced preliminary AMD GPU
support, which would allow us to explore tradeoffs on their
hardware compared to HIP. We also plan to use our existing
SYCL implementation from [20] to directly compare vendor-
agnostic languages on both GPU and CPU. Finally, we intend
to investigate scalability to multiple GPUs/nodes using Cha-
pel’s built-in support for distributed computing and insights
from existing literature.

CODE
https://github.com/vtsynergy/Chapel-Examples
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