
CHAPEL 1.25 RELEASE NOTES:
COMPILER AND TOOL IMPROVEMENTS

Chapel Team
September 23, 2021

OUTLINE

• LLVM Back-end by Default
• Specifying Compilers
• c2chapel Improvements

LLVM BACK-END BY DEFAULT

Background

Background:
• The compiler has traditionally generated C code to produce its executables

– Requires a C compiler to build the final binary

• Has also had the ability to generate LLVM IR for many releases
– Skips the step of generating and compiling C source files
– Generates and compiles LLVM IR in memory

4

LLVM BY DEFAULT

“The LLVM Core libraries provide a modern source- and target-
independent optimizer, along with code generation support for many
popular CPUs (as well as some less common ones!) These libraries are
built around a well specified code representation known as the LLVM
intermediate representation (‘LLVM IR’).”
- llvm.org

https://llvm.org/

This Effort: Overview

This Effort:
• Made LLVM the default back-end for Chapel

– More opportunities for optimization vs. the C back-end
– Promotes community involvement in developing the back-end by leveraging a common infrastructure
– Decreases longer-term testing burden

• Fixed bugs in the compiler's LLVM back-end
– Generating incorrect instructions
– Mishandling signedness

5

LLVM BY DEFAULT

This Effort: Choosing between LLVM options and C

• Changed the default value of the CHPL_LLVM setting, as follows:
CHPL_LLVM=bundled # if the bundled LLVM has already been built
CHPL_LLVM=system # if a system LLVM installation is detected
CHPL_LLVM=none # on systems where LLVM doesn’t currently work for us, like linux32
CHPL_LLVM=unset # otherwise

• Issue an error when building the compiler if CHPL_LLVM is detected to be 'unset'
Error: Please set the environment variable CHPL_LLVM to a supported value.
Supported values are:

1) 'none' to build without LLVM support
2) 'bundled' to build with the LLVM packaged in the third-party directory
3) 'system' to use a pre-installed system-wide LLVM

6

LLVM BY DEFAULT

This Effort: Opting out of LLVM

• In cases where LLVM is the default, request the C back-end via CHPL_TARGET_COMPILER
export CHPL_TARGET_COMPILER=gnu
export CHPL_TARGET_COMPILER=<supported compiler>

• Supported C compilers are listed in the Environment section of the online documentation

• To disable LLVM entirely
export CHPL_LLVM=none

7

LLVM BY DEFAULT

https://chapel-lang.org/docs/1.25/usingchapel/chplenv.html

Status, Next Steps

Status:
• LLVM is now the default back-end in nearly all configurations

Next Steps:
• Address performance regressions

– Some tests lost performance with LLVM vs. the C back-end
– 'chpl --fast’ occasionally takes longer to compile with LLVM vs. the C back-end

• Upgrade from LLVM-11 to LLVM-12
• Investigate opportunities to further improve optimization with the LLVM back-end

8

LLVM BY DEFAULT

SPECIFYING COMPILERS

Background, This Effort

Background:
• Generating and compiling C code was the default, but one could request LLVM code generation with ‘--llvm’
• There was no way to indicate the C or C++ compilation command / path

– e.g., when ‘CHPL_TARGET_COMPILER=gnu’ the compilation would always use ‘gcc’

• There was confusion about how ‘CHPL_TARGET_COMPILER’ interacts with the choice of C or LLVM strategies

This Effort:
• Deprecated ‘--llvm’ and ‘--no-llvm’ flags
• Now, LLVM code generation is the default, but it can be toggled by changing the target compiler

– ‘CHPL_TARGET_COMPILER=llvm’ or ‘--target-compiler=llvm’ requests LLVM code generation
– ‘CHPL_TARGET_COMPILER=gnu’ or ‘--target-compiler=gnu’ requests generating C code & compiling it with ‘gcc’

• Additionally, ‘CC’ and ‘CXX’ environment variables are now available to control the C compiler command
– ‘CHPL_HOST_CC’ / ‘CHPL_HOST_CXX’ and ‘CHPL_TARGET_CC’ / CHPL_TARGET_CXX’ are also available when needed

10

SPECIFYING COMPILERS

Impact, Next Steps

Impact:
• Now ‘make’ only needs to build one runtime in LLVM-enabled configurations
• Resolved confusion about ‘CHPL_TARGET_COMPILER’ with the LLVM code generation
• Enabled a common strategy for setting the compiler command with ‘CC’ and ‘CXX’

– including specifying the complete path to the compiler:
CC=/usr/local/opt/llvm@11/bin/clang \
CXX=/usr/local/opt/llvm@11/bin/clang++ \
chpl myprogram.chpl

– or requesting a particular version:
CC=gcc-10 CXX=g++-10 chpl myprogram.chpl

Next Steps:
• Should setting ‘CC’ / ‘CXX’ request C code generation? (issue #18450)

– Currently, it does
– Probably surprising if these are broadly set on a system to request a preferred C compiler

• Run down some other challenges/ambiguities that are emerging in the new approach (e.g., issue #18530)

11

SPECIFYING COMPILERS

https://github.com/chapel-lang/chapel/issues/18450
https://github.com/chapel-lang/chapel/issues/18530

C2CHAPEL IMPROVEMENTS

Background: ‘c2chapel’ is a tool that takes C header files and generates Chapel C-bindings
• Attempting to use c2chapel with Apache Arrow/Parquet led to the discovery of many issues

This Effort: Extended c2chapel to work with GNU extensions and fix bugs
• Added a new `--gnu-extensions` flag to use a parser capable of handling GNU expressions

– As a result of this, c2chapel now requires Python 3.7 instead of 3.6 (affects Chapel’s whole virtual environment)
• Included Chapel C-interop modules by default to support additional C types
• Fixed support for C structs that don’t have an explicit `typedef`

Impact: Enabled c2chapel to fully parse Apache Arrow library
• Saves significant development time when enabling C library support
• Many c2chapel-generated programs now compile out of the box

13

C2CHAPEL IMPROVEMENTS

typedef struct {
int memberVar;

} intStruct;

extern record intStruct {
var memberVar : c_int;

}

OTHER COMPILER AND TOOL
IMPROVEMENTS

For a more complete list of compiler and tool changes and improvements in the 1.25 release,
refer to the following sections in the CHANGES.md file:

• ‘Tool Improvements’
• ‘Compilation-Time / Generated Code Improvements’

• ‘Portability’
• ‘GPU Computing’
• ‘Compiler Improvements’

• ‘Compiler Flags’
• ‘Bug Fixes’

• ‘Bug Fixes for Tools’

15

OTHER COMPILER AND TOOL IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.25/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

