
CHAPEL 1.25 RELEASE NOTES:
PERFORMANCE OPTIMIZATIONS

Chapel Team
September 23, 2021

• InfiniBand Optimizations
• Automatic Aggregation

Improvements
• Barrier Optimizations
• Bounded Coforall

Optimization Improvements

OUTLINE

INFINIBAND OPTIMIZATIONS

Background

• Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)
• gasnet-ibv supports two registration modes:

– Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
– Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup

• Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times
• We believe this is the right choice for most users

– Have recommended static registration to some users with certain communication-heavy idioms

• Ideally, we just want to have one mode with no, or few, downsides

• The 1.24.1 release included significant InfiniBand performance improvements
• Many of these reduced the gap in communication performance between dynamic and static registration
• For this release, we wanted to further tune performance and hopefully work towards a single registration mode

4

INFINIBAND

Background and This Effort

Background: Discovered IB verbs completion queues (CQ) were being highly contended
• CQs are polled to track the completion of network operations
• Currently, multiple threads share a single CQ, which leads to concurrent polling and contention
• CQs are protected by an unaligned lock in the verbs API
• Unaligned lock led to false-sharing, which compounded performance penalty

– Bottleneck was identified with perf-c2c, a tool that helps identify cacheline contention

This Effort:
• Collaborated with GASNet team to serialize CQ polling with an aligned try-lock

– Try-lock skips polling if the lock is already held, reducing total number of polling calls and contention
– Alignment eliminates false-sharing

5

INFINIBAND OPTIMIZATIONS

Impact

• Significant performance improvements for applications with concurrent communication

6

INFINIBAND OPTIMIZATIONS

~35% improvement for
static registration

Impact

• Significant performance improvements for applications with concurrent communication

7

INFINIBAND OPTIMIZATIONS

~2x improvement for
static registration

~25% improvement for
dynamic registration

Impact

• Significant performance improvements for Arkouda with dynamic registration

8

INFINIBAND OPTIMIZATIONS

Impact

• Significant reduction in variability on systems with Address Space Layout Randomization (ASLR)
• ASLR led to randomized CQ lock addresses, which made the impact of false-sharing variable from run-to-run
• Our test systems run with ASLR disabled, but many sites have it enabled

– GASNet results show improved stability on systems with ASLR (L: linear-scale 64-core Intel, R: log-scale 128-core AMD)

9

INFINIBAND OPTIMIZATIONS

Next Steps

• Further reduce CQ contention by using the GASNet-EX multi-endpoint API
• Creating an endpoint and CQ per thread can reduce contention

• Improve dynamic registration performance
• CQ polling optimizations widened the gap between dynamic and static registration performance

• Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
• Hardware/firmware takes care of registration on demand rather than tracking in software
• Current prototype hangs

– Needs more investigation and collaboration with the GASNet team

• Gather performance comparisons between Chapel and reference MPI/SHMEM codes
• Use this to drive further optimizations

10

INFINIBAND OPTIMIZATIONS

AUTOMATIC AGGREGATION
IMPROVEMENTS

Background and This Effort

Background:
• In Chapel 1.24, we added a compiler optimization to aggregate remote communication

forall i in A.domain do
A[i] = B[computeIndex(i)]; // accesses to B are aggregated

• The optimization is off-by-default and can be enabled with ‘--auto-aggregation’

This Effort:
• More comprehensive coverage for automatic aggregation
• Performance improvements

12

AUTOMATIC AGGREGATION IMPROVEMENTS

Impact – Improved Coverage

• Local, non-distributed arrays are recognized as local
var A = newBlockArr(1..10, int);
coforall l in Locales do on l {
var localArr: [1..10] int;
forall i in localArr.domain do
localArr[i] = A[computeIndex(i)];

13

AUTOMATIC AGGREGATION IMPROVEMENTS

Access to a local array that’s declared on ‘here’

Communication will be aggregated

Impact – Improved Coverage

• Local, non-distributed arrays are recognized as local
var A = newBlockArr(1..10, int);
coforall l in Locales do on l {
var localArr: [1..10] int;
forall i in localArr.domain do
localArr[i] = A[computeIndex(i)];

• Explicit calls to ‘localAccess’ recognized as local
var A = newBlockArr(1..10, int);
var B = newBlockArr(1..10, int);
forall i in A.domain do
A.localAccess[computeLocalIndex(i)] = B[computeIndex(i)];

14

AUTOMATIC AGGREGATION IMPROVEMENTS

Access to a local array that’s declared on ‘here’

Communication will be aggregated

Left-hand side is local because of ‘localAccess’

Communication will be aggregated

Impact – Improved Performance

• Changes made to improving aggregation in Arkouda were incorporated in upstream Chapel

15

AUTOMATIC AGGREGATION IMPROVEMENTS

Around 20% improvement for
automatic and manual aggregation

Next Steps

• Provide user-facing aggregation (#16963)

• Port more bale apps for testing aggregation

• Improve all-local aggregation performance

• Extend the coverage to promoted expressions

• Investigate multi-hop aggregators for better memory scalability

16

AUTOMATIC AGGREGATION IMPROVEMENTS

https://github.com/chapel-lang/chapel/issues/16963

BARRIER OPTIMIZATIONS

Background and This Effort

Background: At CHIUW 2021, the CHAMPS team reported performance issues in synchronization code
• Synchronization is implemented with a variant of the ‘allLocalesBarrier’
• Discovered excessive communication on every ‘barrier()’ call

– Due to the implementation using a distributed array in a class, which is a known performance issue (#10160)

This Effort: Optimized ‘allLocalesBarrier’
• Moved distributed array out of the class to eliminate all communication beyond the inter-node barrier itself

– Workaround until performance issues around distributed array fields are resolved

18

BARRIER OPTIMIZATIONS

https://github.com/chapel-lang/chapel/issues/10160

Impact

• Significantly faster barrier, especially for configurations where concurrent communication is slow
• On 16 nodes of a Cray CS with InfiniBand, barrier is roughly 14x faster

19

BARRIER OPTIMIZATIONS

0

10

20

30

40

50

60

70

InfiniBand Aries

T
im

e
(s

ec
on

ds
)

16-node allLocalesBarrier (100,000 trials)

1.24 1.25

Impact

• Significantly faster barrier at scale, even for configurations where concurrent communication is fast
• On 512 nodes of a Cray XC with Aries, barrier is roughly 18x faster

20

BARRIER OPTIMIZATIONS

0

10

20

30

40

50

60

70

80

90

100

Aries

T
im

e
(s

ec
on

ds
)

512-node allLocalesBarrier (100,000 trials)

1.24 1.25

BOUNDED COFORALL
OPTIMIZATION IMPROVEMENTS

Background and This Effort

Background: Chapel 1.15 added a bounded coforall optimization
• Reduces task-tracking overhead for coforalls with a known trip-count (ranges, domains, arrays)
• During 1.25 we discovered this optimization did not fire for zippered coforalls

– Identified while optimizing ‘Block’ array creation communication
– Used zippered iteration to reduce communication, but execution time suffered due to slower task-tracking

This Effort: Extended the bounded coforall optimization to include zippered iteration
• This enabled optimizing communication for BlockDist array creation

22

BOUNDED COFORALL OPTIMIZATION IMPROVEMENTS

Impact

• Performance improvements for codes using bounded zippered coforalls

23

BOUNDED COFORALL OPTIMIZATION IMPROVEMENTS

~15% faster force computation

Impact

• Communication count reduction for BlockDist array creation

24

BOUNDED COFORALL OPTIMIZATION IMPROVEMENTS

2x less communication

OTHER PERFORMANCE
IMPROVEMENTS

For a more complete list of performance changes and improvements in the 1.25 release, refer to
the following section in the CHANGES.md file:

• ‘Performance Optimizations/Improvements’

26

OTHER PERFORMANCE IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.25/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

