Hewlett Packard
Enterprise

<

CHAPEL 1.27.6/ 1.28.0 RELEASE NOTES:
LIBRARY IMPROVEMENTS

Chapel Team
June 30, 2022 / September 15, 2022

e New 'Co

e 'min'and’

e | iteral and Ne

e Reduced I/O Bu \5Ju A@.

o New ‘OS’ /‘OS.POS ’ModuIe
e 2.0 Library S’rablllza on

e Other Library Imrove en’rs

\

N\
\ X,

NEW ‘COMMUNICATION’ MODULE
Background and This Effort

Background:

» Users have requested the ability to move data using low-level get/put calls
—to avoid potential overheads from Chapel array assignment
- necessary when working with C pointers
- ‘CopyAggregation’ module and some optimized codes have used non-user-facing compiler primitives

This Effort:

e Chapel 1.28 introduces a new standard module: ‘Communication’
—currently only two functions: ‘get’ and ‘put”

proc get(dest: c¢ void ptr, src: c void ptr, srcLocID: int, numBytes: integral)
proc put (dest: c¢ void ptr, src: c void ptr, destLocID: int, numBytes: integral)

NEW ‘COMMUNICATION’ MODULE
Status and Next Steps

Status:
« Uses of primitives have been replaced with calls to functions in ‘Communication’
-e.g., the ‘CopyAggregation’ module now uses ‘Communication’ rather than put/get primitives

Next Steps:
o Expand the interface
—wide reference manipulation: creating one from a C pointer, getting a C pointer from an existing one
- non-blocking communication
— collective communication

e Module structure design

—where do collectives go?
—where do existing barrier implementations go?
- should ‘CommbDiagnostics’ (not a 2.0 module) be a submodule in ‘Communication™

—

‘MIN’ AND ‘MAX’ IMPROVEMENTS

Background: Historically, ‘min” and ‘max’ have had surprising behavior when mixing signed and unsigned
var myInt: int, myUint: uint, myInt32: int(32), myUint32: uint(32);

min (myInt, myUint); // produced a real(64)
max (myInt, myUint); // produced a real(64)

min (myInt32, myUint32); //produced an int(64)
max (myInt32, myUint32); //produced an int(64)

« At the same time, we have supported comparisons (e.g. ‘<”) between signed and unsigned integers
This Effort: Adjust ‘min’ and ‘max’ overloads to support a mix of signed and unsigned integers

Impact: Now, the behavior is less confusing
min (myInt, myUint); // now produces an int(64)
max (myInt, myUint); // now produces a uint(64)

min (myInt32, myUint32); //now produces an int(32)
max (myInt32, myUint32); //now produces a uint(32)

— o

LITERAL AND NEWLINE IO METHODS
Background

e Consider a simple textual representation of a list:

[ll 2’ 3/ 4]
e A reasonable, but incorrect, approach to reading this list might try to use the string literal "[*:
var openBracket = "[";

myReader.read (openBracket); //openBracketsetto "[1,” and channel points to whitespace
e Channels support read/write methods whose behavior depends on an argument’s type, not its value

« Problem: Reading a string variable by design ignores the string contents & reads until whitespace

e Writing a list to a formatted channel, e.g. one configured for JSON, also has challenges for string literals
o Writing a string to a channel configured for JSON wraps the string in quotes, by design:
JsonWriter.write (" ["),; //printssquare bracket with quotes: "["
« However, sometimes you may not want that, like when printing out the list’s brackets in this example
— Historical workaround: use the ‘ioLiteral’ and ‘ioNewline’ types
- Channels know that the ‘ioLiteral’ should bypass any formatting

JsonWriter.write (new ioLiteral (" [")),; //correctly prints:[

— .

LITERAL AND NEWLINE IO METHODS
This Effort

 We intend to deprecate ‘ioLiteral’ and ‘ioNewline’ [#19487]

o It’s potentially confusing to need to use different types
« In the rest of 10, one generally uses a different method to achieve a different behavior
—How to apply this philosophy and support the same use cases?

e Introduced ‘readLiteral’, ‘matchLiteral’, and ‘writeLiteral’ (plus ‘*Newline’ versions)
« These accept either ‘string’ or ‘bytes’ arguments and can ignore leading whitespace, e.g.:

proc channel.readLiteral(literal: string, ignoreWhitespace=true): void throws
e These ignore the channel’s formatting (and the Encoder/Decoder when available)

e ‘Read’ and ‘Match’ versions differ in how they handle the case when the literal is not found
e ‘Read’ will throw
- Useful when expecting to find the literal, so that errors can be caught or propagated upward

o ‘Match’ will return ‘false’
—Sometimes it’s useful fo perform a speculative read to see if there’s more data, especially in a loop

—

10

https://github.com/chapel-lang/chapel/issues/19487

LITERAL AND NEWLINE 10 METHODS
Impact and Next Steps

Impact: New, unstable methods are available for users to try instead of ‘ioLiteral’ or ‘ioNewline’

« Marked as unstable pending some minor design decisions (see below)
« See documentation for more details

« ‘Read’ and ‘Match’ versions complement each other for elegant code:

// reading text like “[1, 2, 3, 4]” into a ‘list(int)’, expects at least one element
r.readLiteral ("["); //throws an errorif [’ is not found

do data.append(r.read(int)); while r.matchLiteral(","); //breaksloop once commas cannot be found
r.readLiteral ("1");

Next Steps:
« Replace existing uses of ‘ioLiteral’ and ‘ioNewline’ in our infernal and standard modules

« Answer design questions in order to stabilize the interface:
- How to handle leading whitespace in the given ‘string’ or ‘bytes’ argument?
—Should ‘readNewline’ and ‘matchNewline’ have an optional ‘ignoreWhitespace’ argument?

— |

11

https://chapel-lang.org/docs/1.28/modules/standard/IO.html

N N —

REDUCED 1/0 CHANNEL BUFFER

MEMORY USAGE

REDUCED 1/0 CHANNEL BUFFER MEMORY USAGE

Background:

 1/O channels buffer data in memory
o Application reads/writes are buffered in their entirety
« A single read can only be about 1/3 the size of physical memory, a write about 1/2

This Effort:

» Break large reads/writes of unstructured data into smaller fixed-size operations on the underlying file
e Only buffer a portion of the read/write in the channel

Impact:
» Large reads/writes can be almost the size of physical memory
o Significantly reduces memory requirements

Next Steps:
« Investigate reducing buffering of structured data (e.g., array of integers)

— .

NEW ‘OS’ AND ‘OS.POSIX’ MODULES

Background:

o Chapel has supported several standard modules providing access to system-level capabilities
« Organization and roles have been poorly defined, but have seen improvements in recent releases
—See the past few editions of release notes for examples

This Effort:

e Infroduced new ‘OS’ and ‘OS.POSIX’ modules
— OS: contains portable features and interfaces using standard Chapel naming conventions

— 0S.POSIX: sub-module containing POSIX-specific features using POSIX names whenever possible
- Implemented a large swath of POSIX features for it
- Could imagine future sibling modules for other, non-POSIX operating systems if/when desired (e.g., ‘OS.Windows")

Status:
o Chapel’s features that wrap and support system errors are now contained within this ‘OS’ module
o Most POSIX/POSIX-like features from other system-oriented modules have been deprecated and/or [re]lmoved
o (see subsequent slides for further details)

— |

15

2.0 LIBRARY STABILIZATION
Background
e Our primary focus is standard library stabilization

« Stabilization: Going forward, all changes will be backwards-compatible
—Users should be able to depend on anything not marked @unstable to continue working through all 2.##.# releases.

Our review process:

e On even weeks, we reviewed a new library, scrutinizing
- naming: the module, public types, public procedures, ...
- placement: is this the right place for these symbols?
—behaviors / definitions of all public symbols

e On odd weeks we had followed up on a previously reviewed library

o Also created a sub-team to review the IO module
—10 sub-team members meet regularly and call full-tfeam meetings when part of the interface is ready for discussion

—

17

2.0 LIBRARY STABILIZATION
This Effort

e In 1.26 we had:

e Reviewed 30 standard libraries (out of 38 total)
» Stabilized 2 standard libraries

e During the 1.27/1.28 release cycles we:
» Reviewed 8 more standard libraries
e Implemented many changes based on reviews
 Finished a first-round review of every module slated for 2.0

» We also added the ‘@unstable’ attribute to mark symbols we don't intend to stabilize for 2.0
« See the language deck for more details

— .

STANDARD LIBRARY STABILIZATION

Status: In Numbers

38 modules reviewed

5 modules stabilized:

« Path, Builtins, Subprocess, SysError, Sys

7 modules that are close to being stabilized:

o CTypes, Regex, Time, DateTime, Version, Locales, Types

7 modules that we’'ve decided not to stabilize before Chapel 2.0:

« CommbDiagnostics, Memory[.Diagnostics], BitOps, GMP, Dynamiclters, Vectorizinglterator, Help
1 module that we're unlikely to stabilize unless we have time:

e Heap

19

2.0 LIBRARY STABILIZATION

Status: Visualized

SOIWOLY

18 A\JUAS
S9|eJ0 7
UOILeZI|BILIUISAOIN AJOWSIA
SJ104J43
pPaumQ / paleys
sAely
sulewo(
sabuey
salAg / bulils
SISV

oWl |

YCIEN|
Wl] ajleq
10113SAS
oIsegsAg

S
ssa20.4dgns
L,S9dA 1D
slalleg
wopuey
YleNOINY/YIBA
1a6atu|big
sadA |
S[eJIETIEN
yied

]

Wa4SAS9|l
19S

de|n

S
blyuop|dyn

suiying S
LN
N
i

SIS

1.26
1.27

N

Review Started

Progress

Stable

* - ChapelEnv was renamed to ChplConfig, and CPtr / SysCTypes were combined and renamed to

20

CTypes

2.0 LIBRARY STABILIZATION

Status: Visualized

SOIWOLY

18 A\JUAS
S9|eJ0 7
UOILeZI|BILIUISAOIN AJOWSIA
SJ104J43
pPaumQ / paleys
sAely
sulewo(
sabuey
salAg / bulils
SISV

oWl |

YCIEN|
Wl] ajleq
10113SAS
oIsegsAg

S
ssa20.4dgns
L,S9dA 1D
slalleg
wopuey
YleNOINY/YIBA
1a6atu|big
sadA |
S[eJIETIEN
yied

]

Wa4SAS9|l
19S

de|n

S
blyuop|dyn

suiying S
O
N
i

SISTS

1.27
1.28

Review Started

Progress

Stable

* - ChapelEnv was renamed to ChplConfig, and CPtr / SysCTypes were combined and renamed to

21

CTypes

e SysBasi .
e |O

e Math / AutoMath
e Biginteger
o DateTime / Time

SYS MODULE

Background:

e The 'Sys' module contained symbols and procedures used in low-level programming
—Provided thin interfaces over POSIX and other Unix libraries and system calls
— Acted as a sort of catch-all for systems-level interfaces that didn't have a more logical home

Actions Taken:
» Deprecated the 'Sys' module in favor of organizing content under more specific modules [#19904]

—POSIX functionality was moved to a new 'OS.POSIX' sub-module
e.g., 'Sys.sys_fd_set' was deprecated in favor of 'OS.POSIX.FD_SET'in 1.27 and removed in 1.28

—Most socket functionality was moved to the 'Socket' package module
e.g., 'Sys.SO_ERROR' was deprecated in favor of 'Socket.SO_ERROR' in 1.28

— All other symbols were deprecated along with the module itself

e.g., various network and IP constants unused in other modules or tests

—

23

https://github.com/chapel-lang/chapel/issues/19904

SYSERROR MODULE

Background:
e A module defining common system-level errors

Actions Taken / Decisions Made:
» Deprecated the entire module, moving its contents to the ‘OS’ module
Renamed functions from ‘SysError’

—‘SystemError.fromSyserr’ is now ‘.createSystemError’
Renamed and moved an error type from ‘SysBasic’ to ‘OS’

—‘SysBasic.syserr’ is now ‘OS.errorCode’
Renamed class names with acronyms to match the preferred style, e.g.,
—‘BlockinglOError’ is now ‘BlockingloError’

—‘IOError’ is now ‘loError’
—‘EOFError’ is now ‘EofError’

The former contents of ‘SysError’ are now considered stable

—

24

SYSBASIC MODULE

Background:

Along with 'SysCTypes' and 'CPtr', this was a grab-bag of C type aliases and error codes
Had already moved some contents to new 'CTypes' or 'OS.POSIX' modules
—Needed to decide what to do with the remainder

Actions Taken / Decisions Made:

'syserr' has been renamed to 'errorCode' and moved to the '‘OS' module
‘err_t' has been replaced with 'c_int’ (to match C interfaces) and has been deprecated [#20123]
Error codes that were part of 'OS.POSIX' in 1.27 were deprecated and then removed in 1.28

Decided to deprecate or hide the remainder of the module as implementation details:
—'fd_t' will be deprecated [#20128]

—Error codes we added (e.g., 'EEOF") will be implementation details [#20129, #20130]

— Linux-specific and POSIX STREAM extension error codes will be deprecated [#20131, #20132]
This means the whole 'SysBasic' module will be deprecated

—

25

https://github.com/chapel-lang/chapel/issues/20123
https://github.com/chapel-lang/chapel/issues/20128
https://github.com/chapel-lang/chapel/issues/20129
https://github.com/chapel-lang/chapel/issues/20130
https://github.com/chapel-lang/chapel/issues/20131
https://github.com/chapel-lang/chapel/issues/20132

10 MODULE

Background and Actions Taken

Background:

e The IO module handles reading and writing to files, as well as formatted |10
—‘write()’, ‘writeln() and ‘writef()’ are provided by default, all other 10 functions are defined in the IO module
o Implements ‘file’ and ‘channel’ types
o This module is very large, ~7300 lines
e It also has many known API design issues

Actions Taken:

10 subteam completed review of the |0 module and made proposals for Chapel 2.0
» Presented most of the proposals to the entire Chapel team for feedback and approval
« Continued implementing approved proposals (see next slide)

— .

10 MODULE
Status

Completed:

« Deprecated the ‘iohints’ type in favor of the new ‘ioHintSet’ type [#20141]
Deprecated the ‘<~>’ operator on channels [#19501]
Introduced methods for reading and writing literal text and newlines [#19487]
Marked ‘iostyle’ type as unstable rather than deprecated
Deprecated ‘start’ and ‘end’ arguments in favor of ‘region’ range [#20133]

Pending:
e Rename I/O ‘channel’ type to fileReader’ and ‘fileWriter [#18112]

« Add an extensible Encoder/Decoder mechanism [#18499]
— Deprecate §" and ‘h’ format string specifiers in favor of Encoders/Decoders
« Continue redesign and deprecation of various channel methods

—

27

https://github.com/chapel-lang/chapel/issues/20141
https://github.com/chapel-lang/chapel/issues/19501
https://github.com/chapel-lang/chapel/issues/19487
https://github.com/chapel-lang/chapel/issues/20133
https://github.com/chapel-lang/chapel/issues/18112
https://github.com/chapel-lang/chapel/issues/18499

10 MODULE

Open Discussions and Next Steps

Open Discussions:
« What should be done with the ‘iokind’ field on channels? [#19314]
o Clean up ‘read’ functionality [#19498]
» Replace ‘readstring’ and ‘readbytes’, mimic Python’s behavior [#19496]
e Should ‘assertEOF’ be replaced with ‘atEOF? [#19316]
o What should be done with the various file-creating functions? [e.g., openfd: #20143]

Next Steps:
« Reach decisions on the open discussion items above
e Implement the Encoder/Decoder design
o Rename ‘channel’ to ‘fileReader’ and ‘fileWriter’
« Resolve ‘readline’ vs ‘readIn’ vs ‘read*line’ functionality [#19495]

— .

https://github.com/chapel-lang/chapel/issues/18496
https://github.com/chapel-lang/chapel/issues/19314
https://github.com/chapel-lang/chapel/issues/19498
https://github.com/chapel-lang/chapel/issues/19496
https://github.com/chapel-lang/chapel/issues/19316
https://github.com/chapel-lang/chapel/issues/20143
https://github.com/chapel-lang/chapel/issues/19495

MATH / AUTOMATH MODULES

Background:
» 'Math' module provided mathematical constants and functions, e.g., 'e', 'sqrt()’, 'gcd()'
—Names were usually based on C's interface, which was influenced by ISO standards
e Was included in all programs by default

Actions Taken / Decisions Made:

 Split info two modules, 'AutoMath' and 'Math' [#18989]
—'AutoMath’ continues to be included in all programs by default, 'Math' now requires a 'use' or 'import' statement
—Some symbols will cease to be included by default as they are discussed [#18990]

o Will mostly stick with C/ISO standard conventions

Open Discussions:
o Continue reducing symbols included by default [#18990]
e Rounding support is incomplete, should it be extended for 2.0? [#19024]
e Should we use 'gamma()' or 'tfgamma()' for the gamma function name? [#19022]

— .

https://github.com/chapel-lang/chapel/issues/18989
https://github.com/chapel-lang/chapel/issues/18990
https://github.com/chapel-lang/chapel/issues/18990
https://github.com/chapel-lang/chapel/issues/19024
https://github.com/chapel-lang/chapel/issues/19022

BIGINTEGER MODULE

Background:
« Provides 'bigint’ type for storing and manipulating arbitrary precision integers

Actions Taken:
o Deprecated fits_*_p()' methods and replaced with a new 'fitsInto(type t: integral)' method [#17702]

var bSmall = 1if b.fitsInto(int(16)) then b:int(16) else 0;
 Unified behaviors of 'bigint.mod()' and 'bigint.%' with their 'int/uint' counterparts [#17713]

« Modified 'invert' to throw on illegal arguments rather than leaving 'this' undefined [#17708]

Open Discussions:
« Should methods be rewritten to store result in a third argument rather than updating receiver? [#17699]
bigint.add(c, a, b); //semantically equivalent to ‘c = a + b;' currently: ‘c.add(a, b)’'
 Revisiting the name of the 'round' enum—conflicts with 'Math.round()’
e There are 13 other small library stabilization issues remaining that are likely uncontentious

—See the full list of issues
- And 9 non-breaking changes in progress

—

30

https://github.com/chapel-lang/chapel/issues/17702
https://github.com/chapel-lang/chapel/issues/17713
https://github.com/chapel-lang/chapel/issues/17708
https://github.com/chapel-lang/chapel/issues/17699
https://github.com/chapel-lang/chapel/issues?q=is%3Aissue+is%3Aopen+%5BLibrary+Stabilization%5D+BigInteger+label%3A%22type%3A+Chapel+2.0%22+

DATETIME / TIME MODULES

Background:
« Provides types and procedures for reasoning about and manipulating dates and times

Actions Taken / Decisions Made:

o Combined the ‘DateTime’ and ‘Time’ modules into a single “Time’ module
Adjusted names of several methods to use camelCase

Deprecated ‘datetime.today()’ in favor of its synonym ‘datetime.now()’
Marked time zones as unstable — we expect interface changes as concrete time zones are added
Deprecated subtracting a ‘date’ from a ‘datetime’ - it’'s ambiguous what the time part should be in the ‘date’

Open Discussions:
« Discussion about capitalization of symbols, (e.g., ‘DayOfWeek.Monday’ vs. ‘DayOfWeek.monday’) [#18846]

e Some questions about C interoperability wrappers [#18833]
- Should we keep them as-is? Move them? Remove them? Add a ‘c_’ prefix?
« Rename ‘Timer’ to ‘stopwatch’ and make any other stabilizing changes to its interface [#16393]

— .

https://github.com/chapel-lang/chapel/issues/18846
https://github.com/chapel-lang/chapel/issues/18833
https://github.com/chapel-lang/chapel/issues/16393

TYPES MODULE

Background:
e This module contains functions to query and modify types

Actions Taken:
o Ensured we have 'isXType', 'isXValue', and 'isX' functions for each type X'
—We previously had these for some types and not others; this effort makes things more consistent
e Deprecated 'isFloatType'/ 'isFloatValue' / 'isFloat
— These procs returned true for 'real' and 'imag' types/values but not ‘complex'
—Saw instances in our own and user code where 'isFloat' was used when user actually meant ‘isReal’
- Someday we may want to add a generic 'floatingPoint' type (similar to ‘integral’) but aren't settled on the name

Open Discussions:

« Remove type/subtype comparison operators (in favor of named functions) [#19363]
—Instead of 'derivedClass < parentClass' do 'isSubtype(derivedClass, parentClass)'

—Removing these causes 100+ failures in one of our user codes
—However, we have received feedback that users found the operators confusing
—For the time being we have marked these unstable while we gather more feedback

—

32

https://github.com/chapel-lang/chapel/issues/19363

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.27.0 and 1.28.0 releases,
refer to the following sections in the CHANGES.md file:

e 'Namespace Changes'

 'Changes / Feature Improvements in Libraries'

e 'Name Changes in Libraries'

 'Deprecated / Unstable / Removed Library Features'
 'Standard Library Modules'

e 'Memory Improvements'

e 'Documentation’

e 'Bug Fixes'

— .

https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

