
June 30, 2022 / September 15, 2022
Chapel Team

CHAPEL 1.27.0/1.28.0 RELEASE NOTES:
LIBRARY IMPROVEMENTS

OUTLINE

• New 'Communication' Module
• 'min' and 'max' Improvements
• Literal and Newline IO Methods
• Reduced I/O Buffer Memory
• New ‘OS’ / ‘OS.POSIX’ Modules
• 2.0 Library Stabilization
• Other Library Improvements

NEW ‘COMMUNICATION’ MODULE

Background and This Effort

Background:
• Users have requested the ability to move data using low-level get/put calls

– to avoid potential overheads from Chapel array assignment
– necessary when working with C pointers
– ‘CopyAggregation’ module and some optimized codes have used non-user-facing compiler primitives

This Effort:
• Chapel 1.28 introduces a new standard module: ‘Communication’

– currently only two functions: ‘get’ and ‘put’:

proc get(dest: c_void_ptr, src: c_void_ptr, srcLocID: int, numBytes: integral)
proc put(dest: c_void_ptr, src: c_void_ptr, destLocID: int, numBytes: integral)

4

NEW ‘COMMUNICATION’ MODULE

Status and Next Steps

Status:
• Uses of primitives have been replaced with calls to functions in ‘Communication’

– e.g., the ‘CopyAggregation’ module now uses ‘Communication’ rather than put/get primitives

Next Steps:
• Expand the interface

– wide reference manipulation: creating one from a C pointer, getting a C pointer from an existing one
– non-blocking communication
– collective communication

• Module structure design
– where do collectives go?
– where do existing barrier implementations go?
– should ‘CommDiagnostics’ (not a 2.0 module) be a submodule in ‘Communication’?

5

NEW ‘COMMUNICATION’ MODULE

‘MIN’ AND ‘MAX’ IMPROVEMENTS

Background: Historically, ‘min’ and ‘max’ have had surprising behavior when mixing signed and unsigned
var myInt: int, myUint: uint, myInt32: int(32), myUint32: uint(32);

min(myInt, myUint); // produced a real(64)
max(myInt, myUint); // produced a real(64)

min(myInt32, myUint32); // produced an int(64)
max(myInt32, myUint32); // produced an int(64)

• At the same time, we have supported comparisons (e.g. ‘<’) between signed and unsigned integers

This Effort: Adjust ‘min’ and ‘max’ overloads to support a mix of signed and unsigned integers

Impact: Now, the behavior is less confusing
min(myInt, myUint); // now produces an int(64)

max(myInt, myUint); // now produces a uint(64)

min(myInt32, myUint32); // now produces an int(32)
max(myInt32, myUint32); // now produces a uint(32)

7

‘MIN’ AND ‘MAX’ IMPROVEMENTS

LITERAL AND NEWLINE IO METHODS

Background

• Consider a simple textual representation of a list:
[1, 2, 3, 4]

• A reasonable, but incorrect, approach to reading this list might try to use the string literal "[":
var openBracket = "[";
myReader.read(openBracket); // openBracket set to "[1,” and channel points to whitespace

• Channels support read/write methods whose behavior depends on an argument’s type, not its value
• Problem: Reading a string variable by design ignores the string contents & reads until whitespace

• Writing a list to a formatted channel, e.g. one configured for JSON, also has challenges for string literals
• Writing a string to a channel configured for JSON wraps the string in quotes, by design:

jsonWriter.write("["); // prints square bracket with quotes: "["

• However, sometimes you may not want that, like when printing out the list’s brackets in this example
– Historical workaround: use the ‘ioLiteral’ and ‘ioNewline’ types
– Channels know that the ‘ioLiteral’ should bypass any formatting
jsonWriter.write(new ioLiteral("[")); // correctly prints: [

9

LITERAL AND NEWLINE IO METHODS

This Effort

• We intend to deprecate ‘ioLiteral’ and ‘ioNewline’ [#19487]
• It’s potentially confusing to need to use different types
• In the rest of IO, one generally uses a different method to achieve a different behavior

– How to apply this philosophy and support the same use cases?

• Introduced ‘readLiteral’, ‘matchLiteral’, and ‘writeLiteral’ (plus ‘∗Newline’ versions)
• These accept either ‘string’ or ‘bytes’ arguments and can ignore leading whitespace, e.g.:

proc channel.readLiteral(literal: string, ignoreWhitespace=true): void throws
• These ignore the channel’s formatting (and the Encoder/Decoder when available)

• ‘Read’ and ‘Match’ versions differ in how they handle the case when the literal is not found
• ‘Read’ will throw

– Useful when expecting to find the literal, so that errors can be caught or propagated upward

• ‘Match’ will return ‘false’
– Sometimes it’s useful to perform a speculative read to see if there’s more data, especially in a loop

10

LITERAL AND NEWLINE IO METHODS

https://github.com/chapel-lang/chapel/issues/19487

Impact and Next Steps

Impact: New, unstable methods are available for users to try instead of ‘ioLiteral’ or ‘ioNewline’
• Marked as unstable pending some minor design decisions (see below)
• See documentation for more details
• ‘Read’ and ‘Match’ versions complement each other for elegant code:

// reading text like “[1, 2, 3, 4]” into a ‘list(int)’, expects at least one element
r.readLiteral("["); // throws an error if ‘[’ is not found

do data.append(r.read(int)); while r.matchLiteral(","); // breaks loop once commas cannot be found
r.readLiteral("]");

Next Steps:
• Replace existing uses of ‘ioLiteral’ and ‘ioNewline’ in our internal and standard modules
• Answer design questions in order to stabilize the interface:

– How to handle leading whitespace in the given ‘string’ or ‘bytes’ argument?
– Should ‘readNewline’ and ‘matchNewline’ have an optional ‘ignoreWhitespace’ argument?

11

LITERAL AND NEWLINE IO METHODS

https://chapel-lang.org/docs/1.28/modules/standard/IO.html

REDUCED I/O CHANNEL BUFFER
MEMORY USAGE

Background:
• I/O channels buffer data in memory
• Application reads/writes are buffered in their entirety
• A single read can only be about 1/3 the size of physical memory, a write about 1/2

This Effort:
• Break large reads/writes of unstructured data into smaller fixed-size operations on the underlying file
• Only buffer a portion of the read/write in the channel

Impact:
• Large reads/writes can be almost the size of physical memory
• Significantly reduces memory requirements

Next Steps:
• Investigate reducing buffering of structured data (e.g., array of integers)

13

REDUCED I/O CHANNEL BUFFER MEMORY USAGE

NEW ‘OS’ AND ‘OS.POSIX’ MODULES

Background:
• Chapel has supported several standard modules providing access to system-level capabilities
• Organization and roles have been poorly defined, but have seen improvements in recent releases

– See the past few editions of release notes for examples

This Effort:
• Introduced new ‘OS’ and ‘OS.POSIX’ modules

–OS: contains portable features and interfaces using standard Chapel naming conventions
–OS.POSIX: sub-module containing POSIX-specific features using POSIX names whenever possible

– Implemented a large swath of POSIX features for it
– Could imagine future sibling modules for other, non-POSIX operating systems if/when desired (e.g., ‘OS.Windows’)

Status:
• Chapel’s features that wrap and support system errors are now contained within this ‘OS’ module
• Most POSIX/POSIX-like features from other system-oriented modules have been deprecated and/or [re]moved
• (see subsequent slides for further details)

15

NEW ‘OS’ AND ‘OS.POSIX’ MODULES

2.0 LIBRARY STABILIZATION

Background

• Our primary focus is standard library stabilization
• Stabilization: Going forward, all changes will be backwards-compatible

– Users should be able to depend on anything not marked @unstable to continue working through all 2.##.# releases.

Our review process:
• On even weeks, we reviewed a new library, scrutinizing

– naming: the module, public types, public procedures, …
– placement: is this the right place for these symbols?
– behaviors / definitions of all public symbols

• On odd weeks we had followed up on a previously reviewed library

• Also created a sub-team to review the IO module
– IO sub-team members meet regularly and call full-team meetings when part of the interface is ready for discussion

17

2.0 LIBRARY STABILIZATION

This Effort

• In 1.26 we had:
• Reviewed 30 standard libraries (out of 38 total)
• Stabilized 2 standard libraries

• During the 1.27/1.28 release cycles we:
• Reviewed 8 more standard libraries
• Implemented many changes based on reviews
• Finished a first-round review of every module slated for 2.0

• We also added the '@unstable' attribute to mark symbols we don't intend to stabilize for 2.0
• See the language deck for more details

18

2.0 LIBRARY STABILIZATION

Status: In Numbers

• 38 modules reviewed
• 5 modules stabilized:

• Path, Builtins, Subprocess, SysError, Sys
• 7 modules that are close to being stabilized:

• CTypes, Regex, Time, DateTime, Version, Locales, Types
• 7 modules that we’ve decided not to stabilize before Chapel 2.0:

• CommDiagnostics, Memory[.Diagnostics], BitOps, GMP, DynamicIters, VectorizingIterator, Help

• 1 module that we're unlikely to stabilize unless we have time:
• Heap

19

STANDARD LIBRARY STABILIZATION

Status: Visualized

20

2.0 LIBRARY STABILIZATION
Bu

ilt
in

s
Ch

pl
Co

nf
ig

*
Li

st
M

ap
Se

t
Fi

le
Sy

st
em

IO Pa
th

R
ef

le
ct

io
n

T
yp

es
Bi

gI
nt

eg
er

M
at

h/
A

ut
oM

at
h

R
an

do
m

Ba
rr

ie
rs

CT
yp

es
*

Su
bp

ro
ce

ss
Sy

s
Sy

sB
as

ic
Sy

sE
rr

or
D

at
eT

im
e

R
eg

ex
T

im
e

V
er

si
on

St
rin

g
/

By
te

s
R

an
ge

s
D

om
ai

ns
A

rr
ay

s
Sh

ar
ed

 /
 O

w
ne

d
Er

ro
rs

M
em

or
y.

M
ov

eI
ni

tia
liz

at
io

n
Lo

ca
le

s
Sy

nc
V

ar
A

to
m

ic
s

1.25

1.26

1.27

Stable Progress Review Started

* - ChapelEnv was renamed to ChplConfig, and CPtr / SysCTypes were combined and renamed to
CTypes

Status: Visualized

21

2.0 LIBRARY STABILIZATION
Bu

ilt
in

s
Ch

pl
Co

nf
ig

*
Li

st
M

ap
Se

t
Fi

le
Sy

st
em

IO Pa
th

R
ef

le
ct

io
n

T
yp

es
Bi

gI
nt

eg
er

M
at

h/
A

ut
oM

at
h

R
an

do
m

Ba
rr

ie
rs

CT
yp

es
*

Su
bp

ro
ce

ss
Sy

s
Sy

sB
as

ic
Sy

sE
rr

or
D

at
eT

im
e

R
eg

ex
T

im
e

V
er

si
on

St
rin

g
/

By
te

s
R

an
ge

s
D

om
ai

ns
A

rr
ay

s
Sh

ar
ed

 /
 O

w
ne

d
Er

ro
rs

M
em

or
y.

M
ov

eI
ni

tia
liz

at
io

n
Lo

ca
le

s
Sy

nc
V

ar
A

to
m

ic
s

1.26

1.27

1.28

Stable Progress Review Started

* - ChapelEnv was renamed to ChplConfig, and CPtr / SysCTypes were combined and renamed to
CTypes

2.0 LIBRARY
STABILIZATION

• Sys
• SysError
• SysBasic
• IO
• Math / AutoMath
• BigInteger
• DateTime / Time
• Types

Background:
• The 'Sys' module contained symbols and procedures used in low-level programming

– Provided thin interfaces over POSIX and other Unix libraries and system calls
– Acted as a sort of catch-all for systems-level interfaces that didn't have a more logical home

Actions Taken:
• Deprecated the 'Sys' module in favor of organizing content under more specific modules [#19904]

– POSIX functionality was moved to a new 'OS.POSIX' sub-module
e.g., 'Sys.sys_fd_set' was deprecated in favor of 'OS.POSIX.FD_SET' in 1.27 and removed in 1.28

– Most socket functionality was moved to the 'Socket' package module
e.g., 'Sys.SO_ERROR' was deprecated in favor of 'Socket.SO_ERROR' in 1.28

– All other symbols were deprecated along with the module itself
e.g., various network and IP constants unused in other modules or tests

23

SYS MODULE

https://github.com/chapel-lang/chapel/issues/19904

Background:
• A module defining common system-level errors

Actions Taken / Decisions Made:
• Deprecated the entire module, moving its contents to the ‘OS’ module
• Renamed functions from ‘SysError’

– ‘SystemError.fromSyserr’ is now ‘.createSystemError’
• Renamed and moved an error type from ‘SysBasic’ to ‘OS’

– ‘SysBasic.syserr’ is now ‘OS.errorCode’
• Renamed class names with acronyms to match the preferred style, e.g.,

– ‘BlockingIOError’ is now ‘BlockingIoError’
– ‘IOError’ is now ‘IoError’
– ‘EOFError’ is now ‘EofError’

• The former contents of ‘SysError’ are now considered stable

24

SYSERROR MODULE

Background:
• Along with 'SysCTypes' and 'CPtr', this was a grab-bag of C type aliases and error codes
• Had already moved some contents to new 'CTypes' or 'OS.POSIX' modules

– Needed to decide what to do with the remainder

Actions Taken / Decisions Made:
• 'syserr' has been renamed to 'errorCode' and moved to the 'OS' module
• 'err_t' has been replaced with 'c_int’ (to match C interfaces) and has been deprecated [#20123]
• Error codes that were part of 'OS.POSIX' in 1.27 were deprecated and then removed in 1.28

• Decided to deprecate or hide the remainder of the module as implementation details:
– 'fd_t' will be deprecated [#20128]
– Error codes we added (e.g., 'EEOF') will be implementation details [#20129, #20130]
– Linux-specific and POSIX STREAM extension error codes will be deprecated [#20131, #20132]

• This means the whole 'SysBasic' module will be deprecated

25

SYSBASIC MODULE

https://github.com/chapel-lang/chapel/issues/20123
https://github.com/chapel-lang/chapel/issues/20128
https://github.com/chapel-lang/chapel/issues/20129
https://github.com/chapel-lang/chapel/issues/20130
https://github.com/chapel-lang/chapel/issues/20131
https://github.com/chapel-lang/chapel/issues/20132

Background and Actions Taken

Background:
• The IO module handles reading and writing to files, as well as formatted IO

– ‘write()’, ‘writeln()’ and ‘writef()’ are provided by default, all other IO functions are defined in the IO module
• Implements ‘file’ and ‘channel’ types
• This module is very large, ~7300 lines
• It also has many known API design issues

Actions Taken:
• IO subteam completed review of the IO module and made proposals for Chapel 2.0
• Presented most of the proposals to the entire Chapel team for feedback and approval
• Continued implementing approved proposals (see next slide)

26

IO MODULE

Status

Completed:
• Deprecated the ‘iohints’ type in favor of the new ‘ioHintSet’ type [#20141]
• Deprecated the ‘<~>’ operator on channels [#19501]
• Introduced methods for reading and writing literal text and newlines [#19487]
• Marked ‘iostyle’ type as unstable rather than deprecated
• Deprecated ‘start’ and ‘end’ arguments in favor of ‘region’ range [#20133]

Pending:
• Rename I/O ‘channel’ type to ‘fileReader’ and ‘fileWriter’ [#18112]
• Add an extensible Encoder/Decoder mechanism [#18499]

– Deprecate ‘j’ and ‘h’ format string specifiers in favor of Encoders/Decoders

• Continue redesign and deprecation of various channel methods

27

IO MODULE

https://github.com/chapel-lang/chapel/issues/20141
https://github.com/chapel-lang/chapel/issues/19501
https://github.com/chapel-lang/chapel/issues/19487
https://github.com/chapel-lang/chapel/issues/20133
https://github.com/chapel-lang/chapel/issues/18112
https://github.com/chapel-lang/chapel/issues/18499

Open Discussions and Next Steps

Open Discussions:
• What should be done with the ‘iokind’ field on channels? [#19314]
• Clean up ‘read’ functionality [#19498]
• Replace ‘readstring’ and ‘readbytes’, mimic Python’s behavior [#19496]
• Should ‘assertEOF’ be replaced with ‘atEOF’? [#19316]
• What should be done with the various file-creating functions? [e.g., openfd: #20143]

Next Steps:
• Reach decisions on the open discussion items above
• Implement the Encoder/Decoder design
• Rename ‘channel’ to ‘fileReader’ and ‘fileWriter’
• Resolve ‘readline’ vs ‘readln’ vs ‘read*line’ functionality [#19495]

28

IO MODULE

https://github.com/chapel-lang/chapel/issues/18496
https://github.com/chapel-lang/chapel/issues/19314
https://github.com/chapel-lang/chapel/issues/19498
https://github.com/chapel-lang/chapel/issues/19496
https://github.com/chapel-lang/chapel/issues/19316
https://github.com/chapel-lang/chapel/issues/20143
https://github.com/chapel-lang/chapel/issues/19495

Background:
• 'Math' module provided mathematical constants and functions, e.g., 'e', 'sqrt()', 'gcd()'

– Names were usually based on C's interface, which was influenced by ISO standards

• Was included in all programs by default

Actions Taken / Decisions Made:
• Split into two modules, 'AutoMath' and 'Math' [#18989]

– 'AutoMath' continues to be included in all programs by default, 'Math' now requires a 'use' or 'import' statement
– Some symbols will cease to be included by default as they are discussed [#18990]

• Will mostly stick with C/ISO standard conventions

Open Discussions:
• Continue reducing symbols included by default [#18990]
• Rounding support is incomplete, should it be extended for 2.0? [#19024]
• Should we use 'gamma()' or 'tgamma()' for the gamma function name? [#19022]

29

MATH / AUTOMATH MODULES

https://github.com/chapel-lang/chapel/issues/18989
https://github.com/chapel-lang/chapel/issues/18990
https://github.com/chapel-lang/chapel/issues/18990
https://github.com/chapel-lang/chapel/issues/19024
https://github.com/chapel-lang/chapel/issues/19022

Background:
• Provides 'bigint' type for storing and manipulating arbitrary precision integers

Actions Taken:
• Deprecated 'fits_*_p()' methods and replaced with a new 'fitsInto(type t: integral)' method [#17702]

var bSmall = if b.fitsInto(int(16)) then b:int(16) else 0;
• Unified behaviors of 'bigint.mod()' and 'bigint.%' with their 'int/uint' counterparts [#17713]
• Modified 'invert' to throw on illegal arguments rather than leaving 'this' undefined [#17708]

Open Discussions:
• Should methods be rewritten to store result in a third argument rather than updating receiver? [#17699]

bigint.add(c, a, b); // semantically equivalent to ‘c = a + b;' currently: ‘c.add(a, b)'

• Revisiting the name of the 'round' enum—conflicts with 'Math.round()'
• There are 13 other small library stabilization issues remaining that are likely uncontentious

– See the full list of issues
– And 9 non-breaking changes in progress

30

BIGINTEGER MODULE

https://github.com/chapel-lang/chapel/issues/17702
https://github.com/chapel-lang/chapel/issues/17713
https://github.com/chapel-lang/chapel/issues/17708
https://github.com/chapel-lang/chapel/issues/17699
https://github.com/chapel-lang/chapel/issues?q=is%3Aissue+is%3Aopen+%5BLibrary+Stabilization%5D+BigInteger+label%3A%22type%3A+Chapel+2.0%22+

Background:
• Provides types and procedures for reasoning about and manipulating dates and times

Actions Taken / Decisions Made:
• Combined the ‘DateTime’ and ‘Time’ modules into a single ‘Time’ module
• Adjusted names of several methods to use camelCase
• Deprecated ‘datetime.today()’ in favor of its synonym ‘datetime.now()’
• Marked time zones as unstable – we expect interface changes as concrete time zones are added
• Deprecated subtracting a ‘date’ from a ‘datetime’ – it’s ambiguous what the time part should be in the ‘date’

Open Discussions:
• Discussion about capitalization of symbols, (e.g., ‘DayOfWeek.Monday’ vs. ‘DayOfWeek.monday’) [#18846]
• Some questions about C interoperability wrappers [#18833]

– Should we keep them as-is? Move them? Remove them? Add a ‘c_’ prefix?

• Rename ‘Timer’ to ‘stopwatch’ and make any other stabilizing changes to its interface [#16393]

31

DATETIME / TIME MODULES

https://github.com/chapel-lang/chapel/issues/18846
https://github.com/chapel-lang/chapel/issues/18833
https://github.com/chapel-lang/chapel/issues/16393

Background:
• This module contains functions to query and modify types

Actions Taken:
• Ensured we have 'isXType', 'isXValue', and 'isX' functions for each type 'X'

– We previously had these for some types and not others; this effort makes things more consistent

• Deprecated 'isFloatType'/ 'isFloatValue' / 'isFloat'
– These procs returned true for 'real' and 'imag' types/values but not 'complex'
– Saw instances in our own and user code where 'isFloat' was used when user actually meant 'isReal'
– Someday we may want to add a generic 'floatingPoint' type (similar to ‘integral’) but aren't settled on the name

Open Discussions:
• Remove type/subtype comparison operators (in favor of named functions) [#19363]

– Instead of 'derivedClass < parentClass' do 'isSubtype(derivedClass, parentClass)'
– Removing these causes 100+ failures in one of our user codes
– However, we have received feedback that users found the operators confusing
– For the time being we have marked these unstable while we gather more feedback

32

TYPES MODULE

https://github.com/chapel-lang/chapel/issues/19363

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.27.0 and 1.28.0 releases,
refer to the following sections in the CHANGES.md file:

• 'Namespace Changes'
• 'Changes / Feature Improvements in Libraries'

• 'Name Changes in Libraries'
• 'Deprecated / Unstable / Removed Library Features'
• 'Standard Library Modules'

• 'Memory Improvements'
• 'Documentation'

• 'Bug Fixes'

34

OTHER LIBRARY IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

