
June 30, 2022 / September 15, 2022 
Chapel Team

CHAPEL 1.27.0/1.28.0 RELEASE NOTES:
ONGOING EFFORTS—DYNO UPDATES



DYNO UPDATES 
OUTLINE

• Introduction and Motivation
• Separate Compilation
• Parsing to uAST
• Scope Resolution
• Resolving Types and Calls
• Dyno-chpldoc
• Performance
• Goals



INTRODUCTION AND MOTIVATION



• dyno is an ongoing effort to address problems with the Chapel compiler
• Focused on improving:

• Speed
• Error messages
• Compiler structure and program representation
• Compiler development

• Recent work has focused on:
• Creating a documented compiler library suitable for use in the compiler and other tools
• Rewriting ‘chpldoc’ to use this new compiler library
• Replacing the early compilation passes with incremental versions
• Adding features to the incremental resolver

4

COMPILER REWORK EFFORT



Speed:
• The current compiler is generally slow, and extremely so for large programs (~7s to 15 minutes)
• Large programs require complete recompilation whenever a change is made

Errors:
• For incorrect programs, the compiler frequently displays only some of the errors at a time
• Compilation errors can be hard for users to understand and address

Structure and Program Representation:
• The compiler is structured only for whole-program analysis, preventing separate/incremental compilation
• Unclear how to integrate an interpreter, provide IDE support, or ‘eval’ Chapel snippets
• Compilation passes are highly coupled

Development:
• The modularity of the compiler implementation needs improvement
• There is a steep learning curve to become familiar with the compiler implementation

5

PROBLEMS FACED BY THE CHAPEL COMPILER



Incremental Compilation Front-end
• Only re-parse and do type resolution on files that were edited

– Could result in reducing compilation time

• Will still have the whole-program optimization and code-generation back-end

Separate Compilation
• Make most of the whole-program optimization happen per-file
• Will need a linking step for optimizations like function inlining that span files
• Should result in significantly faster compilation times

Dynamic Compilation and Evaluation
• Enable Chapel code snippets to be written and run interactively

– e.g., in Jupyter notebooks

6

COMPILER REWORK DELIVERABLES

Throughout the effort, working 
towards improving the learning 
curve and error messages.



COMPILER REWORK STATUS

convert

convert

Chapel 
source

immutable 
uAST

incremental resolver uAST
+ maps

new parser

codegenold AST
(untyped)

old resolver

progressive lowering 
with whole-program 
passes

old AST
(typed)

progressive lowering 
with whole-program 
passes

used in production

from dyno & used in production

new in dyno, in progress

Current Status
• Using dyno parser in production since 1.27
• Using dyno ‘chpldoc’ in production as of 1.28
• Close to replacing scope resolution

7



SEPARATE COMPILATION



• We would like to support separate compilation
• Challenging because there are generic functions and no equivalent to C++ header files
• Compiled libraries will store AST or source code for generic functions in case new instantiations are needed

• In a separate compilation scenario, both compile and link steps need a more flexible pass structure

• compile: need to be able to compile a library without also re-compiling all dependencies

• link: do not want to go through entire compilation process
– rather, link should be limited to:

– instantiating generics as necessary

– connecting invocations of concrete functions to their implementations

• Neither of these are possible with the current rigid whole-program pass structure
• Each pass is run in turn on the entire AST
• Passes make whole-program assumptions and modify global variables

9

SEPARATE COMPILATION: BACKGROUND



• Develop a prototype file format for a Chapel library
• Requires serialized uAST to instantiate new calls
• Need to discuss a suitable file extension

• Update ‘chpl’ to produce this new file format as a library file
• Initially, produce a very simple table of symbols and uAST
• Eventually, begin to cache information in this file, such as resolved functions and types

• Update ‘chpl’ to read this new file format
• Initially, substitute a Chapel library file for a ‘.chpl’ file to skip the parsing stage

– In this way, early prototypes will provide support similar to precompiled headers in C/C++

• Then, begin exploring how to leverage cached information to skip steps of compilation

10

SEPARATE COMPILATION: NEXT STEPS



PARSING TO UAST



• Parsing is the process of reading source code and generating an abstract syntax tree (AST)

• Since 1.27, ‘chpl’ uses the new dyno parser that generates uAST from source code
• uAST (untyped AST) is more faithful to the source code than the old AST

• A new pass in the compiler translates uAST to the old AST

• The old parser has been removed in 1.28 to reduce maintenance

12

PARSING

uast::Variable VarSymbol

uast::Function FnSymbol

uast::Formal ArgSymbol

uast::FnCall CallExpr

module Mod {
var x = 8;

proc f(arg: int) {}

f(x);
}

conversion 
pass

new uAST old AST



SCOPE RESOLUTION



• Scope resolution is the process of matching identifiers with declared symbols
• That is, the process of recognizing that, in ‘arg = 0’ below, ‘arg’ refers to ‘ref arg: int’

proc zero(ref arg: int) {
arg = 0;

}

• In 1.26, dyno scope resolution support was:
• inextricable from type resolution

– Ultimately the model we will pursue long-term, but not ideal for incremental progress
– No way to use scope resolution results elsewhere, like the old compiler

• minimal
– Basic functionality for simple variables and use-statements
– Other essential features missing, e.g., could not scope-resolve fields from inside methods

14

SCOPE RESOLUTION: BACKGROUND



• Added support for scope resolution API queries to dyno library
• Allows for some coarse-grained queries, like scope-resolving a function body

• Improved support for various features
• fields, ‘include’ statements, task intents, catch statements, and more

• ‘--dyno’ flag now activates new scope resolution queries
• A pass at the beginning of the old compiler invokes these queries when translating uAST to old AST

15

SCOPE RESOLUTION: THIS EFFORT

proc zero(ref arg: int) {
arg = 0;

}

uast::Function

uast::Formal

uast::OpCall

uast::Identifier

conversion 
pass

Dyno 
Incremental 

Queries

FnSymbol

ArgSymbol

CallExpr

SymExpr

‘arg’
refers to
‘ref arg’



Impact:
• Dyno scope resolution can now be used with ‘--dyno’
• Significantly improved the implementation and implemented missing pieces
• Can begin to run test suite with ‘--dyno’ to measure progress

Next Steps:
• Expand ‘--dyno’ support for test suite

– current status: 13,626/14,020 tests pass (97%)
– Note: ‘--dyno’ still leans on old compiler for some unhandled cases, so true progress is difficult to quantify

• Begin to disable parts of old compiler as new functionality becomes stable
• Improve support for language features

– E.g., ‘except’/’only’ lists, transitive properties of use/import statements

• Preserve error detection and messages
– E.g., use-before-definition errors

16

SCOPE RESOLUTION: IMPACT AND NEXT STEPS



RESOLVING TYPES AND CALLS



• Resolving includes resolving types and resolving calls

• Resolving types is the process of assigning types to symbols
var x = "hello";  // ‘x’ has the type ‘string’

var y = 1;        // ‘y’ has the type ‘int’

type t = x.type;  // ‘t’ refers to the type ‘string’

• Resolving calls is the process of determining which function a call refers to
• Instantiations are determined if the function is generic
• If there are multiple overloads, determines which overload is called

proc f(arg) {}          // #1

proc f(arg: numeric) {} // #2
proc f(arg: int) {}     // #3
f(1);                   // Calls ‘f’ #3
f("hello");             // Calls ‘f’ #1 with ‘arg’ instantiated with type ‘string’
f(2.0);                 // Calls ‘f’ #2 with ‘arg’ instantiated with type ‘real’

18

RESOLVING TYPES AND CALLS: BACKGROUND



• In 1.26, the resolver was improved to support many language features
• Tuples, recursive types, type queries, function disambiguation, and more 

• In 1.28, the resolver also supports:
• Ranges, if-expressions, ‘enum’s
• Vararg functions
• Loop index variables and ‘param’ for-loops
• Improved function return type inference
• Better inference for generic-with-defaults records and classes
• Rejecting invalid calls to dependently typed functions

19

RESOLVING TYPES AND CALLS: STATUS



20

RESOLVING TYPES AND CALLS: STATUS

Done In Progress To Do

• generic instantiation
• param folding
• implicit conversions
• read a file on use/import
• resolve tuple types
• type construction
• varargs functions
• resolve loop index variables
• param loops
• resolve enums

• scope resolution
• resolve method calls
• function disambiguation
• resolve ‘new’ to initializers
• resolve ‘?t’ in formals
• caching of instantiations
• default functions
• casts and other operators
• arrays & domains
• resolve fields
• resolve parenless methods

• initializers set types
• check initializers
• split init
• copy init & copy elision
• deinit
• forwarding
• const checking
• try/catch
• task/loop intents
• reflection
• reductions

Areas of progress since April 2022 are in bold



• Ranges can now be resolved
• Some of the recent work was motivated by resolving ranges
• Ranges use some tricky language features as shown below

21

RESOLVING TYPES AND CALLS: IMPACT

record range
{

type idxType = int; // element type
param boundedType: BoundedRangeType = BoundedRangeType.bounded; // bounded or not
// …
var _low : chpl__idxTypeToIntIdxType(idxType);  // lower bound
// …

}

proc range.init(type idxType, low: idxType, high: idxType)

‘range’ is generic with defaults

‘range’ uses param enums

initializer is a dependently-typed function



• Complete the implementation of large language features missing from the resolver
• Arrays and domains
• Initialization and split initialization
• Copy initialization and copy elision
• Reflection

22

RESOLVING TYPES AND CALLS: NEXT STEPS



DYNO-CHPLDOC



• As of 1.28, ‘chpldoc’ has been replaced by a dyno-based implementation

• ‘chpldoc’ now demonstrates a tool using the dyno library
• Previous versions of ‘chpldoc’ were a pass within the compiler

• Community development of linters or code formatting tools is now possible
• ‘chpldoc’ can serve as an example

• Provides better formatting for syntax that is rendered in the documentation
• Including range expressions, array expressions, nilable class types, and numeric literals
• A result of the uAST more closely representing the source code than the legacy compiler’s AST

• See the ‘chpldoc’ section in the Compiler, Performance, and Tools deck for more information

24

DYNO-CHPLDOC



PERFORMANCE



Background: Efforts are underway to study and improve dyno performance
• Wall-clock performance (how long does the resolver run?)
• Query performance (how many queries are needed to first resolve something? re-resolve?)

This Effort: Substitute specialized data structures in key places
• The LLVM project provides such data structures (e.g., ‘SmallPtrSet’)

– Can perform better when used appropriately

Impact: Use of LLVM data structures led to performance improvements
• Exact magnitude is unclear while dyno scope resolving is still under development
• Measured a 17% performance improvement with partial scope resolution

Next Steps: Continue tracking resolver performance
• Investigate overhead of query framework itself
• Identify functions to turn into queries

26

PERFORMANCE



NEXT STEPS



These are the planned ‘dyno’ goals for the 1.29 and 1.30 releases:

1. Work towards replacing the scope resolver in the production compiler
– Goal: use the ‘dyno’ scope resolver in production by 1.29 or 1.30

2. Build more components of the dyno resolver to reach feature-completeness
– Goal: have initial implementations of remaining major components of the new resolver by 1.30

3. Design and implement file formats and commands for separate compilation
– Goal: implement uAST serialization/deserialization by 1.29
– Goal: implement draft library file format and demonstrate separate compilation commands by 1.30

4. Begin work on improving error messages
– Goal: migrate errors from parsing and dyno scope resolution to a more user-friendly format by 1.29

28

NEXT STEPS



OTHER DYNO IMPROVEMENTS



For a more complete list of dyno changes and improvements in the 1.27.0 and 1.28.0 releases, refer 
to the following section in the CHANGES.md file:

• Developer-oriented changes: 'dyno' Compiler improvements/changes

30

OTHER DYNO IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md


THANK YOU
https://chapel-lang.org
@ChapelLanguage


