
CHAPEL 1.29.0/1.30.0 RELEASE NOTES:
LANGUAGE IMPROVEMENTS

Chapel Team
December 15, 2022 / March 23, 2023

Background and This Effort

Background: Chapel 2.0
• Goal is to provide a version of the language that is stable

– Features that are documented as being unstable may change in future minor releases
– New non-breaking changes can still be made
– Major changes to features declared stable will trigger a new major version of the language

This Effort:
• Implemented new features requested by users or aiding with stabilization
• Address other issues in need of attention

– User questions have led to some clarifications/simplifications
– Dyno/compiler rework of type/call resolution has uncovered some rough edges

2

LANGUAGE CHANGES IN CHAPEL 1.29 AND 1.30

Stabilized in 1.29 or 1.30, and Next Steps

Stabilized in 1.29 or 1.30:
• Added initial support for throwing initializers, sufficient for supporting standard module use cases
• Stabilized the '.find()’ method on arrays
• Improved range slicing behaviors
• Stabilized zipped serial loops over unbounded ranges
• Made overload resolution for generic vs. typed arguments consistent
• Added support for single statement routines and removed the exception for ‘return’ statements
• Removed support for unary negation on 'uint(w)'
• Deprecated 'bool(w)'

Next Steps:
• Generics: handling of generic records/classes and partial instantiation
• Approach for special method naming
• Consider removing support for default ‘ref-maybe-const’ intents
• Make sure tuple semantics are appropriate w.r.t. ‘ref’ vs. ‘const’ behavior

3

STATUS OF LANGUAGE STABILIZATION

OUTLINE

• Attributes
• Throwing Initializers
• Changes to Yielding Tuples
• ‘.transmute()’ Method
• Array and Range Features
• Class Management Updates
• Untyped vs. Generic Formals
• Single-Statement Routines
• Unary Negation of ‘uint’s
• Deprecation of ‘bool(w)’

ATTRIBUTES

Background

• For some time, Chapel users and developers have been interested in support for attributes
• Purpose: a means of communicating information to the compiler, or other tools, without language changes

// sample attributes:

@attribute1
proc bar() { … }

@attribute2(arg1="value", arg2=1, arg3=1.0, arg4=true, arg5=1..10)
proc foo() { … }

• In the meantime, Chapel has been making use of pragmas, and occasionally keywords, for such purposes
• These approaches were not as flexible or attractive
• Pragmas were never intended to be a user-facing feature

6

ATTRIBUTES

This Effort

• Implemented a generalized attribute feature
• Developed syntax to support attributes in more places than pragmas had been (e.g., loops)
• Added support for multiple (optionally named) arguments
• Defined the notion of tool namespaces

– e.g., ‘@chpldoc.nodoc’ is an attribute specific to the ‘chpldoc’ tool

• Implemented some initial attributes: ‘@unstable’, ‘@deprecated’, and ‘@chpldoc.nodoc’:
@deprecated(since="1.30", notes="foo is deprecated", suggestion="use newFoo instead")
proc foo() { … }

@unstable(category="experimental", issue="1234", reason="testing a new feature")
proc bar() { … }

@chpldoc.nodoc
proc baz() { … }

• Removed the developer-oriented ‘deprecated’ keyword

7

ATTRIBUTES

Status and Next Steps

Status:
• Added attribute support in 1.30.0
• The tool names ‘chpl’ and ‘chpldoc’ are reserved for use by the Chapel team
• Flags can be used to control how the compiler reacts to tool names

– Ignore all tool names by passing ‘--no-warn-unknown-attribute-toolname’ to ‘chpl’
– Ignore a specific tool name by passing ‘--using-attribute-toolname=<toolname>’ to ‘chpl’

Next Steps:
• Implement additional attributes according to our needs and user requests, for example:

– Control memory alignment, e.g., ‘@chpl.align(n)’
– Indicate a loop should always be unrolled, e.g., ‘@chpl.unroll(n)’

• Continue to refine our philosophy about what should be supported as an attribute vs. a language feature
• Remove the “no doc” pragma

8

ATTRIBUTES

THROWING INITIALIZERS

Background and This Effort

Background: Initializers could not be declared with 'throws'
• Only supported 'try!' without catch blocks

proc init(…) { // Couldn't declare with 'throws'
this.x = try! someThrowingFunc(); // Will halt if an error is thrown

}

This Effort: Added initial support for throwing initializers
• Throwing calls can now be made after all fields are initialized

class Foo {
proc init(…) throws {
…
this.complete(); // Guarantees all fields are initialized
someThrowingProc(); // Any thrown error will be propagated out of 'init'

}
}

10

THROWING INITIALIZERS

Impact and Next Steps

Impact:
• Throwing initializers are used by types in the ‘BigInteger’, ‘IO’, and ‘Regex’ modules

– ‘Regex’ can now be stabilized for 2.0

Next Steps:
• Expand support for other throwing patterns:

– Support 'throw' statements in initializer bodies
– Support 'try!'/'try' with 'catch' blocks

• Explore supporting throwing code before field initialization is complete

11

THROWING INITIALIZERS

BEHAVIOR UPDATES
WHEN YIELDING TUPLES

Background and This Effort

Background: tuples are intended to behave like a collection of individual variables
• Specifically, w.r.t. carrying a value vs. a reference

– e.g., ‘f((myInt, myArray))’ passes ‘myInt’ by ‘const in’ and ‘myArray’ by ‘ref’ if ‘f’s formal has default intent

• Default yield intent was “by value” for almost all types
– except it was “by reference” for tuple components that are arrays, records, or similar

– due to an oversight in specification and implementation
– yielding by value was chosen to match returning by value for default return intent

This Effort:
• Reconciled the behavior of yielding tuples with yielding individual values

– “by value” default yield intent now includes tuple components of all types

13

YIELDING TUPLES

Impact

• Record-like types are now yielded by value by default, whether in a tuple or standalone
– e.g., consider the following statements in a procedure or iterator with the default return/yield intent:
return myRecord; // returns ‘myRecord’ by value, as before
return (myRecord, 0); // ditto
yield myRecord; // yields ‘myRecord’ by value, as before
yield (myRecord, 0); // now yields ‘myRecord’ by value, too

• Some adjustments were required to accommodate this change:
– StencilDist’s ‘boundaries’ iterator is now annotated with a pragma to retain the “yield by reference” behavior

– ‘boundaries’ yields (element, index) pairs and allows updating ‘element’ in the loop body

– DistributedFFT code now needs to distinguish between owning and borrowing ‘fftw_plan’ pointers
forall (plan, myzRange) in yPlan.batch() {

... // within loop body, 'plan' is now a copy of a Chapel record wrapping a long-lived ‘fftw_plan’
} // when a loop iteration finishes, 'plan' is now deinitialized, however the wrapped ‘fftw_plan’ should not be destroyed

• Yielding behavior for the default intent is now explicitly defined in the language specification

14

YIELDING TUPLES

Next Steps

• Finalize the default yielding behavior: should it be by value or by default argument intent? [#21888]
• yield by value:

– analogous to returning: passing something back to the outside of the function
– suits iterators that create new records for the purpose of yielding them
– the current default

• yield by default intent
– arrays, string, records, record-like types will be yielded by reference
– analogous to argument passing: treats a loop iteration like a (shorter lived) function call
– more suitable for iterators that yield records external to the iterator
– currently, no user-facing way to achieve this when yielding records within tuples

• Provide a means for users to specify value/reference behavior of each component explicitly
iter map.items() { ... // e.g., we want an iterator over ‘(key, value)’ pairs in a map

yield (const entry.key, ref entry.value); // to yield keys by ‘const’ intent (value or ref) and values by ‘ref’

... }

15

YIELDING TUPLES

https://github.com/chapel-lang/chapel/issues/21888

'.TRANSMUTE’ METHOD

Background and This Effort

Background:
• Chapel’s type conversions typically attempt to preserve logical values when possible

…1: real… // results in 1.0
…2.3: int… // results in 2, a necessary loss of precision due to the types involved

• Sometimes, it is useful to convert between types in a way that preserves bits rather than logical values
– e.g., ‘9218868437227405312’ == ‘0x7ff0000000000000’ == ‘inf’ when bits are interpreted as a floating-point value
– yet ‘9218868437227405312: real’ == ‘9.21887e+18’

This Effort:
• Added a new ‘.transmute()’ method that can convert between types of matching width, preserving bit patterns

…9218868437227405312.transmute(real)… // results in a ’real’ with the value ‘inf’

• Currently, only supports conversions between ‘real(64)’ and ‘uint(64)’ as well as ‘real(32)’ and ‘uint(32)’
– Supports both compile-time (‘param’) and execution-time transmutations

17

‘.TRANSMUTE’ METHOD

Impact, Status, and Next Steps

Impact:
• Addresses a longstanding user request

Status:
• Implemented in 1.30.0
• Currently considered unstable because design did not receive much attention prior to the release

Next Steps:
• Finalize interface design and stabilize
• Consider adding support for other types of matching width

– e.g., transmute from an ‘imag’ to a ‘uint’, ‘int’, or ‘real’?

• Consider extending to richer types:
– e.g., transmute a 1024-element array of ‘real(32)’ into a 512-element array of ‘uint(64)’?
– e.g., transmute a 4-tuple of uint(8) into an ‘int(32)’?

18

‘.TRANSMUTE’ METHOD

ARRAY AND RANGE
IMPROVEMENTS

• ‘.fullIdxType’ Query
• ‘.find()’ Method on Arrays
• Array Literal Type Inference
• Range Slicing Improvements
• Unbounded ranges:

• Serial Zipped Loops
• with ‘enum’/’bool’ Indices

‘.FULLIDXTYPE’ QUERY

Background:
• Chapel arrays have long supported an ‘.idxType’ query for the per-dimension index type

– matches the ‘idxType’ argument used when declaring range and domain types
var A: [1..100] real; …A.idxType… // evaluates to ‘int’ since A’s only dimension is indexed by ‘int’s

var B: [1..100, 1..100] real; …B.idxType… // evaluates to ‘int’ since each dimension is indexed by ‘int’s
var C = ["hi" => 1, "bye" => 2]; …C.idxType… // evaluates to ‘string’ since strings are used to index ‘C’

• Have also desired some way of referring to the complete index type used by multidimensional arrays in practice
– can think of this query as indicating “what type would a loop over this array’s domain yield?”
var A: [1..100] real; …A.???… // would evaluate to ‘int’

var B: [1..100, 1..100] real; …B.???… // would evaluate to ‘2*int’
var C = ["hi" => 1, "bye" => 2]; …C.???… // would evaluate to ‘string’

This Effort:
• Decided to name this query ‘.fullIdxType’ and implemented it for Chapel 1.30
• Used it in the new 1-argument ‘array.find()’ routine (see next section)

Next Steps:
• Explore whether Chapel could/should support implicit conversions between scalars of type ‘t’ and ‘1*t’ tuples

21

ARRAYS: ‘.FULLIDXTYPE’ QUERY

‘.FIND’ METHOD ON ARRAYS

Background and This Effort

Background:
• Chapel arrays have supported a ‘.find()’ method for quite some time
• However, its return type has not matched that of ‘.find()’ on ‘bytes’ or ‘string’ values

bytes.find(…): int; // returns ‘–1’ if the pattern was not found
string.find(…): byteIndex; // returns ‘–1’ if the pattern was not found
[array].find(…): (bool, index(this.domain)) // returns whether or not the value was found + the index if it was

– Traditional rationale for difference: No obvious sentinel index to return since arrays can have arbitrary indices

• In addition, its implementation has been serial
– Not ideal for a parallel language, particularly when using it on distributed arrays

This Effort:
• Deprecated previous ‘.find()’ on arrays and introduced two new overloads (enabled with ‘-suseNewArrayFind’):

– First overload is only supported on rectangular arrays
proc [array].find(val: eltType): fullIdxType; // returns ‘domain.lowBound – 1’ if ‘val’ is not found
proc [array].find(val: eltType, ref idx: fullIdxType): bool; // returns ‘true’ & location in ‘idx’; or ‘false’

• Parallelized these new implementations

23

ARRAYS: ‘.FIND’ METHOD

Impact

Impact: Parallelization helps at modest problem sizes (here, a local 64k-element array of 8-bit ints)

• Improvements for distributed arrays can be massive, due to properly aligning iterations with their array elements
– E.g., communication counts for a ‘find()’ on a 1,000,000-element array distributed across 4 locales:

– Old serial version: New parallel version:

24

ARRAYS: ‘.FIND’ METHOD

Find-based implementation of reverse-complement,
parallelized on this date

fa
st

er

Status and Next Steps

Status:
• The interface and implementation of ‘.find()’ on arrays is now much improved

Next Steps:
• Optimize implementation for additional cases:

– Make use of ‘memchr()’ when searching for 8-bit values?
– Squash parallelism for smaller arrays?

• Consider adding an ‘indices’ argument to restrict searches, as with ‘string/bytes.find()’?
– Not as crucial for arrays since they support O(1) slicing, unlike ‘string’/’bytes’
– Yet, could be more efficient than slicing

• Make serial loops over distributed domains/arrays execute with proper affinity to indices/elements?

25

ARRAYS: ‘.FIND’ METHOD

ARRAY LITERAL TYPE INFERENCE

Background and This Effort

Background:
• Traditionally, Chapel has inferred an array literal’s element type based on its first element:

[1.2, 3] // inferred to be an array of ‘real’ due to ‘1.2’; since ‘3’ can coerce to ‘real’, this is OK
[1, 2.3] // inferred to be an array of ‘int’ due to ‘1’; since ‘2.3’ can’t coerce to ‘int’, this was an error

This Effort:
• Improved array literal inference to consider all elements

– Implemented using return type inference for procedures, so has similar capabilities and limitations
– Similarly improved ‘LinearAlgebra’ module’s inference of ‘Matrix’ types based on input arrays

• Accelerated the compilation times of homogeneous array literals
– Compilation times for 5060-element arrays:

27

ARRAY LITERAL TYPE INFERENCE

Impact, Status, and Next Steps

Impact:
• Arrays with mixed, yet compatible, element types are now supported

[1.2, 3] // still inferred to be an array of ‘real’
[1, 2.3] // now inferred to be an array of ‘real’

• Improves productivity of users working with arrays and matrices

Status: Implemented in Chapel 1.29.0

Next Steps:
• Move inference logic from module code to compiler code to further accelerate compilation of array literals
• Add language support for multidimensional array literals

28

ARRAY LITERAL TYPE INFERENCE

RANGE SLICING IMPROVEMENTS

Background and This Effort

30

RANGES: SLICING IMPROVEMENTS

Background: range slicing ‘range1[range2]’ is an intersection of index sequences: range1 ∩ range2
• Array and domain slicing perform per-dimension range slicing

This Effort: updated some slicing behavior to match intuition about how array slicing should behave
var A: [1..9] real; // the following comments show (intuition) → (updated behavior)

for a in A[1..9 by -1] do // reverse the traversal order → writes A[9], ..., A[1]
writeln(a);

writeln(A[..6 by 2]); // pick every 2nd index that is ≤6 → writes A[1..6 by 2] i.e., A[1], A[3], A[5]

• Updates for unaligned ranges
(1..7 by -1)[..4 by 2] // intersect the bounds, apply the stride → 1..4 by -2
(1..7 by -2)[..4 by 2] // “impose” ‘align 1’ on 2nd range to match 1st range → 1..4 by -2 align 1
(1..7 by -3)[..5 by 2] // copy alignment from 1st range into 2nd range → 1..5 by -6 align 1

// using ‘align 4’ would be just as valid → issue unstable warning
(..5 by 2)[1..7 by -3] // we expect that users will not need to slice an unaligned range → disallow it for now

Impact, Status, and Next Steps

Impact:
• Range slicing behavior now follows our intuition

Status:
• Enabled new slicing behavior with negative strides when compiling with ‘-snewSliceRule’

– by default, the previous behavior is preserved, with a deprecation warning

• Enabled new slicing behavior with unaligned ranges by default
– this change affects only rare corner cases

• While there, added a warning when creating arrays and slices with negative strides
– enabled by default

Next Steps:
• Enable new slicing behavior with negative strides by default
• Finalize behaviors for arrays and array slices of negative strides

– Ensure correct implementation of array slices with negative strides

31

RANGES: SLICING IMPROVEMENTS

SERIAL ZIPPED LOOPS
OVER UNBOUNDED RANGES

Background and This Effort

Background:
• A parallel zipped loop in Chapel is governed by its leader expression, which determines the policy for the loop

forall (a, b) in zip(A, B) … // ‘A’ is the leader of this loop, so its parallel iterator determines how this loop will be run

• Unbounded ranges have special “follower” behavior when they are zipped with finite leaders
forall (i, j) in zip(lo..hi, 1..) … // though ‘1..’ is conceptually infinite, it will conform to the size of ‘lo..hi’

• To date, unbounded ranges have not supported the leader role in parallel loops
forall (i, j) in zip(1.., lo..hi) … // ‘error: parallel iteration is not supported over unbounded ranges’

• However, they have been legal as leader expressions of serial zipped loops, and conformed to their follower(s)
for (i, j) in zip(1.., lo..hi) … // ran for lo-hi+1 iterations, as though ‘lo..hi’ was the leader

– This felt inconsistent, while also posing challenges for plans to support serial leader/follower iterators in the future

This Effort:
• Considered this a bug and decided to treat such loops as conceptually infinite, similar to ‘for i in 1.. do …’

for (i, j) in zip(1.., lo..hi) … // now results in a size mismatch if it doesn’t ‘break’, ‘return’, or ‘exit’ before j == hi+1

• Added a compile-time warning for such cases to inform users of the change in behavior

33

UNBOUNDED RANGES: ZIPPED SERIAL LOOPS

Impact, Status, and Next Steps

Impact:
• Updated user codes in which serial loops were led by an unbounded range

– Found more cases of this than we had anticipated

• Language now feels more consistent

Status: Implemented in Chapel 1.29.0

Next Steps:
• Develop plan for serial leader-follower iterators
• Permit users to write “unbounded, but willing to conform” iterators, similar to unbounded ranges

– E.g., a serial iterator generating random numbers that conforms to its leader’s size/rank

• Improve general approach used for defining iterator families on a type (“leader-follower 2.0”)
• Add support for unbounded ranges to lead parallel loops?

34

UNBOUNDED RANGES: ZIPPED SERIAL LOOPS

UNBOUNDED RANGES
OVER ENUM/BOOL

Background, This Effort, and Status

Background:
• Chapel 1.27 improved support for looping over unbounded ranges with ‘enum’ and ‘bool’ indices

enum color { red, orange, yellow, green, blue, indigo, violet };
use color;
for c in (blue..) do … // loops over ‘blue’, ‘indigo’, ‘violet’, then stops

• However, a few cases were still not implemented correctly:
for c in (blue.. by -1) do … // should loop over ‘violet’, ‘indigo’, ‘blue’

// instead, got ‘error: halt reached - iteration over range that has no first index’

This Effort:
• Added support for cases that were not working before:

for c in (blue.. by -1) do … // now loops over ‘violet’, ‘indigo’, ‘blue’

Status: Unbounded ranges of ‘enum’ and ‘bool’ now support iteration more consistently

36

UNBOUNDED RANGES: ENUM / BOOL

Next Steps

Next Steps: Determine how other ops on unbounded ranges of ‘enum’ or ‘bool’ should behave [#20896]
• ’(blue..).last’:

– ‘violet’ because that’s the last value iteration would reach?
– Or undefined because it’s unbounded?

• ‘(blue..).high’:
– ‘violet’: because that’s its high bound when iterating?
– Or undefined because it’s unbounded?

• ‘(blue..) == (blue..violet)’
– ‘true’ because they describe the same indices when iterating?
– Or false, because they are not identical range values?

37

UNBOUNDED RANGES: ENUM / BOOL

https://github.com/chapel-lang/chapel/issues/20896

CLASS MANAGEMENT UPDATES

Background

• Chapel supports multiple ways to create and convert objects with different management strategies
var obj = owned.create(new unmanaged A());
var s: shared A?; //
s.retain(obj.release()); // obj is now dead
obj = new A(); //
s = shared.create(obj); // obj is now dead

• Managed objects’ lifetimes can be manually controlled
obj.clear(); // obj is now dead
delete obj.release(); // same as ‘obj.clear()’

• This usage of methods vs. type methods…
• is inconsistent
• provides multiple ways to do the same thing

39

CLASS MANAGEMENT UPDATES

This Effort and Next Steps

This Effort:
• Added three additional experimental type methods intended to replace the previous API

– ‘owned.adopt()’, ‘owned.release()’, and ‘shared.adopt()’
– One way to control object lifetime and convert management strategies

var obj = owned.adopt(new unmanaged A()); // instead of ‘owned.create(...)’
var s = shared.adopt(owned.release(obj)); // instead of ‘s.retain(o.release())’
obj = new A(); //
s = shared.adopt(obj); // instead of ‘shared.create(o)’
delete owned.release(obj); // instead of ‘o.clear()’ or ‘o.release()’

Next Steps:
• Deprecate ‘create()’, ‘retain()’, ‘clear()’, and ‘release()’
• Allow assignment to ‘nil’ as a safer way to cut a lifetime short

obj = nil; // obj is now dead

• Improve the interoperability between managed and unmanaged classes

40

CLASS MANAGEMENT UPDATES

UNTYPED FORMALS
AND IMPLICIT CONVERSION

Background

• Implicit conversion and instantiation are two ways an actual might not precisely match a formal:
proc converts(arg: real) { … } //
converts(1); // implicitly converts the ‘int’ value 1 into the ‘real’ value 1.0 and calls ‘converts(1.0)’

proc instantiates(arg) { … } //
instantiates(1); // instantiates the ‘arg’ formal with ‘int’ to generate ‘proc instantiates(arg: int)’ and calls that

42

UNTYPED FORMALS

Background

• Yet, what happens when the compiler needs to choose between these two for a single call?

• Chapel has preferred to do implicit conversion rather than instantiate an untyped formal
– For example, the call to ‘g(1)’ below would use implicit conversion to call the ‘real’ version:

proc g(arg) { … } // #1
proc g(arg: real) { … } // #2
g(1); // called the ‘real’ version, #2

• In contrast, when the formal had an explicit generic type, Chapel preferred to instantiate:
proc h(arg: integral) { … } // #3
proc h(arg: real) { … }. // #4
h(1); // called the ‘integral’ version, #3

• This differed from the C++ and C# behaviors in addition to being inconsistent between the ‘g()’ and ‘h()’ cases

43

UNTYPED FORMALS

This Effort and Impact

This Effort: Adjusted resolution rules to remove the special behavior for untyped formals
• Now the genericity of formals is only considered when the formals have the same type after instantiation
• Causes the example on the previous slide to behave more similarly to the ‘integral’ version:

proc g(arg) { … } // #1
proc g(arg: real) { … } // #2
g(1); // calls the generic version, #1

Impact:
• Chapel behavior in this regard is now more similar to C++ and C#
• In rare cases, code that assumed the previous behavior needs to be adjusted. For example:

proc category(arg) { return "anything"; }
proc category(arg: real) { return "convertible to real"; }
// can be changed into:

proc category(arg) { return "anything"; }
proc category(arg)

where isCoercible(arg.type, real) { return "convertible to real"; }

44

UNTYPED FORMALS

SINGLE-STATEMENT SUBROUTINES

Background

Background:
• Since Chapel’s inception, it has supported single-statement subroutines if the statement was a ‘return’

proc computeAnswer() //
return 42; //

• However, it has not supported other single-statement subroutines due to the potential for syntactic ambiguities
proc writeDebugMsg(msg)

writeln("Debug: ", msg); // syntax error: near 'writeln’

• Meanwhile, other syntactic constructs support single-statement forms via keywords like ‘do’ and ‘then’:
for i in 1..10 do if verbose then

writeln(i); writeln("Blah blah blah");

• These asymmetries felt unsettling going into Chapel 2.0
– Should ‘return’ get special treatment?
– Should we support other single-statement subroutines?

46

SINGLE-STATEMENT SUBROUTINES

This Effort and Status

This Effort: Decided to resolve these inconsistencies
• Deprecated the special-case for single-statement routines that are returns

proc computeAnswer() // now results in: warning: Single-statement 'return' routines are deprecated;
return 42; // please insert 'do' before the 'return' or wrap the statement in curly brackets

• Added the ability to define single-statement subroutines using ‘do’:
proc writeDebugMsg(msg) do

writeln("Debug: ", msg);

• Updated existing uses of the ‘return’ exception to use ‘do’ instead:
proc computeAnswer() do

return 42;

Status: Implemented in 1.30.0

47

SINGLE-STATEMENT SUBROUTINES

UNARY NEGATION OF UNSIGNED
INTEGERS

Background:
• Historically, the result of unary negation on an unsigned integer depended on its width:

• Potentially surprising to have arithmetic on 32-bit unsigned integers result in 64-bit signed integers

This Effort: Changed unary negation to result in a compilation error for any unsigned integer

Impact:
• Now easier to compute with a particular bit width of unsigned integers
• The error helps users catch unintentional mistakes in their code
• The error allows further adjustments as non-breaking changes

49

UNARY NEGATION

Unsigned Integer Type Result of Unary Negation

unt(64), uint compilation error

uint(32) int(64)

uint(16) int(32)

uint(8) int(16)

DEPRECATION OF ‘BOOL(W)’

Background:
• Chapel has supported fixed-width ‘bool’ values for years: ‘bool(8)’, ‘bool(16)’, ‘bool(32)’, ‘bool(64)’

– Rationale:
– The width of Chapel’s default ‘bool’ is implementation-defined
– These variations gave programmers a means of specifying the bit-width of a specific bool’s representation

• This approach has had some downsides:
– One of the few sources of cycles in the graph of Chapel’s implicit conversions

– ‘bool(8)’ implicitly converts to ‘bool(64)’ which implicitly converts to ‘bool(8)’

– Has felt confusing to users, and often like overkill
– “‘bool’ only requires one bit, so why do all these variations exist?”

• Meanwhile, have also wanted more control over the memory layout of other types
– e.g., the ability to cache-align and/or pad an ‘atomic int(32)’ value

This Effort: Decided to deprecate ‘bool(w)’ and rely on forthcoming memory attributes to control layout

Status: Implemented in Chapel 1.30

Next Steps: Develop and implement attributes for memory alignment and/or padding

51

DEPRECATION OF ‘BOOL(W)’

OTHER LANGUAGE IMPROVEMENTS

For a more complete list of language changes and improvements in the 1.29.0 and 1.30.0 releases,
refer to the following sections in the CHANGES.md file:

• New [Language] Features
• Feature Improvements

• Semantic Changes/Changes to the Chapel Language
• Syntactic/Naming Changes
• Deprecated/Unstable/Removed Language Features

• Bug Fixes

53

OTHER LANGUAGE IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.30/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

