
CHAPEL 1.29.0/1.30.0 RELEASE NOTES:
LIBRARY IMPROVEMENTS

Chapel Team
December 15, 2022 / March 23, 2023

OUTLINE

• Weak Pointers
• ’BigInt’ Improvements
• Chapel 2.0 Stabilization
• Other Library Improvements

WEAK POINTERS

Background

• 'shared' memory management allows multiple variables to refer to the same class instance
• When the last 'shared' variable pointing to a class is deinitialized, the class's memory can be freed
• This is accomplished in a parallel-safe manner using atomic reference counting

{
var s1 = new shared C(); // reference count: 1
{

var s2 = s1; // reference count: 2
} // reference count: 1
var s3 = s1; // reference count: 2

} // reference count: 0

• Some other languages and libraries supporting similar functionality pair it with a weak pointer type
• A weak pointer refers to some 'shared' variable, but doesn't require it to stay allocated
• This can be useful for controlling deallocation in a variety of situations:

– in the presence of cyclical references
– maintaining a cache of references to objects

4

WEAK POINTERS

This Effort

• Added an experimental 'weak' type to the standard library
• The interface design is based heavily on Rust's 'Weak' type

• Weak pointers are meant to be used in tandem with 'shared' classes
• Holding a 'weak' reference to a 'shared' class does not prevent it from being deallocated

– I.e., the behavior of 'shared' itself is not affected by this change

• A 'weak' reference must be upgraded into a 'shared' class before it can be used as a class variable
• If the referenced 'shared' has already been deallocated, i.e., its reference count is zero, upgrading will fail

– If upgrading into a nilable type, the result will be 'nil’; otherwise, an error will be thrown

5

WEAK POINTERS

Supported Conversions

• 'weak' supports a few options for converting to/from 'shared'

6

WEAK POINTERS

• 'downgrade' method:
var myC = new shared C(),

weakC = myC.downgrade();

• weak initializer:
var myC = new shared C(),

weakC = new weak(myC);

shared -> weak

• 'upgrade' method:
var maybeC = weakC.upgrade();
if maybeC != nil { ... }

• cast to a nilable shared:
var maybeC = weakC: shared C?;
if maybeC != nil { ... }

• cast to non-nilable shared:
try {

var c = weakC: shared C;
...

} catch e: NilClassError {
...

}

weak -> shared

Impact: weak cache example

use WeakPointer, Map;
record weakCache {

type t; // cached 'shared' class type
var items: map(string, weak(t)); // map of weak ptrs

proc getOrBuildShared(key: string, builder): t {
if items.contains(key) { // have a 'weak' ptr for this key?

var s : t? = items[key].upgrade();
return if s != nil // found a shared class?

then s: t // yes: cast away nilability
else saveWeak(key, builder(key)); // no: make new one

} else {
return saveWeak(key, builder(key)); // no: make new one

}
}
proc saveWeak(key: string, s: t): t {

items[key] = s.downgrade();
return s;

}
}

7

WEAK POINTERS

• It is now possible to implement data
structures like a “weak cache” that:
• maintain a set of 'shared’ classes, but

do not force them to stay allocated
• upon request, retrieves the ‘shared’

class if it is still allocated, otherwise
constructs a new one using a ‘builder’
function

Impact: weak cache example (continued)

class C { var x: string; }

// define a builder function (using new FCF syntax)
const builder = proc(k: string) {

writeln("building: ", k);
return new shared C(k);

};

{
// create a 'weakCache' using the type defined on the previous slide
var wc = new weakCache(shared C); // the following are the counts for key ”A" in the weak cache:

{ // initially, the cache doesn’t hold “A” so there are no counts
var s1 = wc.getOrBuildShared("A", builder); // shared count: 1, weak count: 1, writes: "building: A"
var s2 = wc.getOrBuildShared("A", builder); // shared count: 2, weak count: 1

} // shared count: 0, weak count: 1 (s1 & s2 deallocated)

var s3 = wc.getOrBuildShared("A", builder); // shared count: 1, weak count: 1, writes: "building: A"
} // shared count: 0, weak count: 0 (cache is deallocated)

8

WEAK POINTERS

Status and Next Steps

Status
• 'weak' is still in its experimental stage, and is marked as unstable

Next Steps
• Resolve some open interface questions:

– Which of the "downgrade" paths (cast, method, & initializer) should be supported? [#20949]
– How to access the corresponding 'shared' type? [#20952]
– Which operators and special methods should be supported? [#20951]

• Decide on a module name and location [#20956]
– Should ‘weak’ by part of the language? Should ‘shared’ be part of the standard library?
– If both ‘weak’ and ‘shared’ are both defined in a standard module, should it be auto-use’d?

• Implement final design and mark as stable

9

WEAK POINTERS

https://github.com/chapel-lang/chapel/issues/20949
https://github.com/chapel-lang/chapel/issues/20952
https://github.com/chapel-lang/chapel/issues/20951
https://github.com/chapel-lang/chapel/issues/20956

‘BIGINT’ IMPROVEMENTS

Background

• The Chapel ‘bigint’ type is a record that wraps GMP’s multiple precision integer
• Stores limbs, sign, magnitude, and other information as a field of the external C ‘mpz_t’ type

• Handles multi-locale execution, arithmetic operator overloads, and automatic memory management

• Recent inclusion of the ‘bigint’ type in Arkouda led to greater scrutiny of the module

• When creating a ‘bigint’, the ‘mpz_t’ buffer is created on the current locale
• In distributed settings, execution is often migrated to the locale owning the buffer, to pass it to extern C routines
• When operating on multiple ‘bigint’s, execution is performed on the LHS locale and the RHS is localized

– i.e., a local copy is made if it isn’t already local

11

‘BIGINT’ IMPROVEMENTS

This Effort and Impact

This Effort:
• Refactored ‘BigInteger’ module, resulting in less code duplication and greater clarity
• During this refactor, several bugs were caught, exposing gaps in the existing ‘bigint’ testing

– Lacked tests of remote ‘bigint’ values
– Lacked tests of ‘bigint’ values larger than 64 bits
– Lacked tests comparing results of 64-bit ‘bigint’ values against Chapel integers

• Added testing of full ‘bigint’ API with remote/massive values and comparisons against Chapel integers

Impact:
• Found and fixed 6 ‘bigint’ correctness bugs
• Removed about 600 lines from the ‘BigInteger’ module
• Reduced code duplication, simplifying code maintenance
• Has the potential to reduce compilation times for ‘bigint’-heavy codes
• Added a fraction of a millisecond overhead to affected ‘bigint’ functions

12

‘BIGINT’ IMPROVEMENTS

Next Steps

• Plan to implement ‘serialize’/‘deserialize’ methods for ‘bigint’, enabling remote value forwarding
• An optimization that transfers values with the message bundle used to implement an ‘on’ statement
• Helps reduce overhead by eliminating remote reads that would otherwise be needed to fetch read-only data

• Continue to explore opportunities for code simplification

• Continue improving and stabilizing ‘bigint’ methods and routines

13

‘BIGINT’ IMPROVEMENTS

CHAPEL 2.0
LIBRARY STABILIZATION

Background and Status

Background:
• Our primary focus is standard library stabilization

–Stabilization: Going forward, all changes will be backwards-compatible
– Users should be able to depend on anything not marked '@unstable' to continue working through all 2.X releases.

Status In Numbers:
• 38 modules reviewed
• 12 modules stabilized:

– Path, Builtins, Subprocess, SysError, Sys, Locales, Types, SysBasic, Regex, Version, Arrays, MemMove

• 9 modules estimated for 1.31:
– CTypes, Time, DateTime, FileSystem, String/Bytes , Map, List, Errors

• 14 modules estimated for 1.32:
– BigInteger, Math, IO, Collectives, Set, ChplConfig, Ranges, Owned/Shared, Domains, Reflection, Sync/Single/Atomics

• 10 modules that we’ve decided not to stabilize before Chapel 2.0:
– CommDiagnostics, Memory[.Diagnostics], BitOps, GMP, DynamicIters, VectorizingIterator, Help, GPU, GpuDiagnostics, Random

15

CHAPEL 2.0 LIBRARY STABILIZATION

Status: Visualized

16

CHAPEL 2.0 LIBRARY STABILIZATION
Bu

ilt
in

s
Ch

pl
Co

nf
ig

Li
st

M
ap

Se
t

Fi
le

Sy
st

em
IO Pa

th
R

ef
le

ct
io

n
T

yp
es

Bi
gI

nt
eg

er
M

at
h/

A
ut

oM
at

h
R

an
do

m
Ba

rr
ie

rs
CT

yp
es

Su
bp

ro
ce

ss
Sy

s
Sy

sB
as

ic
Sy

sE
rr

or
D

at
eT

im
e

R
eg

ex
T

im
e

V
er

si
on

St
rin

g
/

By
te

s
R

an
ge

s
D

om
ai

ns
A

rr
ay

s
Sh

ar
ed

 /
 O

w
ne

d
Er

ro
rs

M
em

or
y.

M
ov

eI
ni

tia
liz

at
io

n
Lo

ca
le

s
Sy

nc
V

ar
A

to
m

ic
s

1.26

1.27

1.28

Stable Progress Review Started

Status: Visualized

17

CHAPEL 2.0 LIBRARY STABILIZATION
Bu

ilt
in

s
Ch

pl
Co

nf
ig

Li
st

M
ap

Se
t

Fi
le

Sy
st

em
IO Pa

th
R

ef
le

ct
io

n
T

yp
es

Bi
gI

nt
eg

er
M

at
h/

A
ut

oM
at

h
R

an
do

m
Co

lle
ct

iv
es

1

CT
yp

es
Su

bp
ro

ce
ss

Sy
s

Sy
sB

as
ic

Sy
sE

rr
or

D
at

eT
im

e2

R
eg

ex
T

im
e2

V
er

si
on

St
rin

g
/

By
te

s
R

an
ge

s
D

om
ai

ns
A

rr
ay

s
Sh

ar
ed

 /
 O

w
ne

d
Er

ro
rs

M
em

M
ov

e3

Lo
ca

le
s

Sy
nc

V
ar

A
to

m
ic

s

1.28

1.29

1.30

1 — Barriers was renamed to Collectives
2 — DateTime and Time were combined into a single module

3 — Memory.MoveInitialization was renamed to MemMove

Stable Progress Review Started

LIBRARY
STABILIZATION
OUTLINE

• IO
• Collectives
• Distribution Modules
• Errors
• FileSystem
• MemMove
• Regex
• SysBasic
• Time
• Types
• Version

Background

• The 'IO' module handles reading and writing to files, as well as formatted IO
• ‘write()’, ‘writeln()’ and ‘writef()’ are provided by default, all other IO functions are defined in the 'IO' module

• Contains 'file' and 'channel' types

• This module is very large, ~7300 lines

19

IO MODULE

This Effort

• Split 'channel' type into 'fileReader' and 'fileWriter'
• Developed prototype Serializer/Deserializer mechanism

• Both for supporting default reading/writing behavior and reading/writing in JSON format
• Added new methods 'readAll()', 'readThrough()', and 'readTo()'
• Added new overloads for 'readBinary()' and 'writeBinary()’
• Made 'region' arguments inclusive of their bounds
• Made 'file.path' exclusively return absolute paths
• Removed unnecessary 'bool' return values from 'write' functions
• Unified 'ioHintSet.mmap' and '.noMmap' into a single type method, 'ioHintSet.mmap(useMmap: bool)'
• Deprecated 'file.localesForRegion()' and 'unicodeSupported()'

• Unicode is always supported
• Marked 'iostringstyle' and 'iostringformat' as unstable
• Renamed or replaced an additional 9 routines, methods and types

20

IO MODULE

Next Steps

• Implement resolved design decisions:
• Add 'stripNewline' argument to 'fileReader.lines()'
• Replace 'fileReader/fileWriter.binary()' with new binary serializer/deserializer
• Deprecate '%j' and '%h' format string specifiers in favor of serializers/deserializers
• Unify methods like 'commit()' and '_commit()' into a single method and document behavior w.r.t. locking

• Implement other serializers/deserializers (e.g., binary, "Chapel format", YAML)

• Resolve open decisions
• How should '%t' behave w.r.t. serializers/deserializers? [#19906]
• Should 'assertEOF()' be deprecated? [#19316]
• What should be done with the 'iokind' field on 'fileReader'/'fileWriter'? [#19314]
• Should the 'writing' method remain on 'fileReader'/'fileWriter' or be deprecated?

21

IO MODULE

https://github.com/chapel-lang/chapel/issues/19906
https://github.com/chapel-lang/chapel/issues/19316
https://github.com/chapel-lang/chapel/issues/18496
https://github.com/chapel-lang/chapel/issues/19314

Background

• The ‘Barriers’ module has supported a ‘Barrier’ record type
• Provides a task barrier with two implementations:

– One that uses atomics, the other ‘sync’ variables

• User could select between them when creating new instances of ‘Barrier’
var b = new Barrier(numTasks, BarrierType.Sync);

– If unspecified, ‘Atomic’ was the default
– Implementation used dynamic dispatch to switch between the two versions

• The ‘Sync’ version was not typically used in practice

22

COLLECTIVES MODULE

This Effort and Next Steps

This Effort:
• Decided to only support the ‘Atomic’ implementation going forward

– Will remove the need for dynamic dispatch on each call once the deprecated ‘Sync’ implementation is removed

• Renamed ‘Barrier’ to ‘barrier’ to match the naming convention for records
– Removed an outdated compiler error about methods whose names matched their type

– This error was introduced when initializers replaced constructors in Chapel

proc barrier.barrier() … // is now allowed!
• Renamed the ‘Barriers’ module to ‘Collectives’

– There is only one ‘barrier’ type, and we expect other collectives to be added over time

• Deprecated the ‘BarrierType’ enum

Next Steps:
• Remove the ‘BarrierType’ enum and the dynamic dispatch-based implementation

– Should improve the speed of barrier method calls significantly

23

COLLECTIVES MODULE

Background:
• ‘BlockDist’ and ‘CyclicDist’ are used to partition a domain’s indices / array’s elements across locales
• These modules have supported standalone factory routines to generate new domains/arrays

This Effort:
• Renamed the factory routines and made them into type methods

– New names are more consistent with factory routine naming in other modules:
– 'newBlockDom(…)' is now 'Block.createDomain(…)'
– 'newBlockArr(…)' is now 'Block.createArray(…)'
– 'newCyclicDom(…)' is now 'Cyclic.createDomain(…)'
– 'newCyclicArr(…)' is now 'Cyclic.createArray(…)’

Impact:
• New routines are clearer, better organized, and support generic programming across distributions

const D = myDist.createDomain(1..n);

24

DISTRIBUTION MODULES: BLOCKDIST AND CYCLICDIST

Background: The 'Errors' module contains common error types and related routines
• Provides the base class 'Error' and some of its child classes
• Provides error and halting procedures, such as: 'assert()', 'compilerError()', 'exit()', 'halt()', etc.

This Effort: Minor consistency and naming improvements
• Unified varargs formatting by removing queries for the number of arguments from all procedures in the module

– Only affects documentation
– Example:

• Renamed argument in 'IllegalArgumentError' initializer from 'info' to 'msg'
– This matches the formal name in the base 'Error' class:
throw new IllegalArgumentError(msg="cannot divide by zero");

25

ERRORS MODULE

Background:
• The ‘FileSystem’ module contains utilities for manipulating files and directories

This Effort:
• Renamed routines to match camelCasing naming conventions:

– listDir(), walkDirs(), getUid(), getGid()

• Deprecated the ‘copyFile()’ routine in favor of ‘copy()’
• Deprecated the ‘sameFile()’ overload that takes a ‘file’ argument

– This was the only routine to take a ‘file’ rather than a path string

• Added an optional ‘metadata’ argument to ‘copyTree()’

Status:
• A few more minor changes are needed for 2.0 stabilization

26

FILESYSTEM MODULE

Background and This Effort

Background: ‘Memory.Initialization’ module provided move-initialize semantics, but was not ready for 2.0
• Uncommon module structure: no other standard modules are sub-modules
• Procedures in the module required naming improvements

This Effort: Stabilized for 2.0 and renamed as top-level ‘MemMove’ module
• Added new routines to replace old, deprecated versions

proc needsDestroy(type t) param : bool // replaces ‘needsDeinit()’
proc destroy(ref obj: ?t) // replaces ‘explicitDeinit()’
proc moveFrom(const ref src: ?t): t // replaces ‘moveToValue()’

• Renamed formals of some routines
proc moveInitialize(ref dst, in src) // formerly ‘lhs’ and ‘rhs’
proc moveSwap(ref x: ?t, ref y: t) // formerly ‘lhs’ and ‘rhs’

27

MEMMOVE

This Effort (continued) and Status

This Effort (continued):
• Replaced ‘moveInitializeArrayElements()’ with unstable ‘moveArrayElements()’

– Old interface was not idiomatic Chapel and unsuitable for 2.0
– Need more experience with ‘moveArrayElements()’ before considering it part of 2.0

proc moveArrayElements(ref dst:[] ?eltType, const ref src:[] eltType) : void throws

// a variant to avoid array slicing
proc moveArrayElements(ref dst:[] ?eltType, const dstRegion,

const ref src:[] eltType, const srcRegion) : void throws

Status: ‘MemMove’ is ready for 2.0

28

MEMMOVE

Background: The ‘Regex’ module (formerly ‘Regexp’) was originally based on Python's 're' module
• 'compile()' was the way to create a 'regex' object from a string

var re = Regex.compile("foo"); // 're' is a 'regex' object

• ‘sub()' and 'subn()' were used for substring replacement based on regex
re.sub(myString, replString); // return a new string where matches of 're' in 'myString' are replaced with 'replString'
re.subn(myBytes, replBytes); // similar, but return a tuple that has the resulting bytes and number of replacements

This Effort: Found parts of the ‘Regex’ interface inconsistent with the standard library
• Deprecated 'compile()' in favor of 'new regex()', now that throwing initializers are supported

var re = new regex("foo"); // with 1.30, 'regex' initializer should be used

• Deprecated ‘sub()’/'subn()' in favor of 'replace()’/'replaceAndCount()' tertiary methods on ‘string’ and ‘bytes’
myString.replace(re, replString); // similar interface to existing 'string.replace(string)', but in 'Regex' module
myBytes.replaceAndCount(re, replBytes); // returns a tuple whose second element is the number of replacements

Status: ‘Regex’ is now stabilized

29

REGEX MODULE

Background: Functionality we wanted to preserve had been moved out of the ‘SysBasic’ module over time
• As of 1.28, contained mostly unused and untested symbols, such as non-POSIX error codes

This Effort: Deprecated entire ‘SysBasic’ module
• Moved Chapel-specific ‘EEOF’, ‘ESHORT’, and ‘EFORMAT’ error codes to ‘OS’ and hid from users

Impact: Some unused symbols were deprecated without replacement, reducing maintenance burden
• ‘fd_t’ alias for ‘c_int’ for file descriptors
• ‘ENOERR’ constant with value of 0, which was Chapel-specific
• Linux-specific (non-POSIX) error codes
• Optional/extension POSIX error codes

Next Steps: Removal of ‘SysBasic’ code in 1.31

30

SYSBASIC MODULE

Background and This Effort

Background:
• The ‘Time’ module provides procedures and types for measuring and reasoning about time

This Effort:
• Renamed the ‘Timer’ type to ‘stopwatch’

– Added ‘stopwatch’ methods ‘restart()’ and ‘reset()’

• Renamed several symbols to match camelCase naming conventions
• Deprecated ‘getCurrentTime()’ in favor of ‘timeSinceEpoch().totalSeconds()’
• Deprecated the ‘TimeUnits’ type in favor of always using seconds

– It was only providing the illusion of increased accuracy
– A more accurate timer can be added as a non-breaking change in the future

31

TIME MODULE

Status and Next Steps

Status:
• ‘Time’ module is nearly 2.0-ready
• Reached consensus on nearly all symbol names and APIs
• Implemented all approved stabilization changes

Next Steps:
• Reach consensus about ‘datetime’ factory functions

– Implement any naming changes they require

• Rename a few additional symbols for camelCasing conventions:
– ‘dateTime’, ‘timeDelta’, ‘day’, ‘getDate’, ‘getTime’

• Implement a monotonic clock and use it where appropriate

32

TIME MODULE

Background:
• The 'Types' module contains routines to query and modify types

This Effort:
• Deprecated type/subtype comparison operators in favor of equivalent named procedures
• Removed deprecated 'isFloatType()'/ 'isFloatValue()' / 'isFloat()' functions

– Previously deprecated due to confusion with 'isReal()' and behavior of returning 'true' for 'imag' but not 'complex'
– Use 'isReal()', 'isImag()', and/or 'isComplex()' instead

Status:
• The 'Types' module is now stable

33

TYPES MODULE

Background: The ‘Version’ module supports reasoning about version numbers
• For both the ‘chpl’ compiler and Chapel programs
• To date, it has only supported version values known at compile-time

This Effort:
• Renamed ‘sourceVersion’ to ‘versionValue’ to more clearly distinguish compile-time cases

– Deprecated ‘createVersion()’ and recommend using ‘new versionValue()’ instead

• Added a ‘version’ type for working with version numbers at execution time
// compile-time example—capable of being used in ‘param’ conditionals

const verVal = new versionValue(1,30,0); // ‘versionValue’ object with values known at compile-time
// execution-time example:

var major, minor, patch : int;
… // assign or adjust values for major, minor, and patch
var ver = new version(major, minor, patch); // ‘version’ object with values not known until execution-time

Status: Implemented in 1.29.0

Impact: programs can use the new ‘version’ type to build and reason about version numbers at run-time

34

VERSION MODULE

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.29.0 and 1.30.0 releases,
refer to the following sections in the CHANGES.md file:

• 'Standard Library Modules'
• 'Package Modules'

• 'Changes / Feature Improvements in Libraries'
• 'Name Changes in Libraries'
• 'Deprecated / Unstable / Removed Library Features'

• 'Performance Optimizations / Improvements'
• 'Memory Improvements'

• 'Documentation' and 'Other Documentation Improvements'
• 'Bug Fixes for Libraries'

36

OTHER LIBRARY IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.30/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

