
CHAPEL 1.29.0/1.30.0 RELEASE NOTES:
COMPILER, PERFORMANCE, AND PACKAGING

Chapel Team
December 15, 2022 / March 23, 2023

OUTLINE

• Generated Assembly
• Reducing Compilation Time
• Array Creation Optimizations
• Parallel Array Deinitialization
• Docker Changes
• LLVM Status
• Portability and Prerequisites
• Documentation Improvements

SHOWING THE
GENERATED ASSEMBLY

Background: Performance-minded users have requested a way to view a procedure’s generated assembly
• Useful for checking compiler optimizations and for evaluating different ways to write something in Chapel

This Effort: Enabled showing an assembly dump for a specific function
• For example, we might like to know if the procedure below uses a vectorized ‘sqrt()’
• The command on the right can be used to answer this question

Status: The new flag currently only works when using the LLVM backend

4

SHOWING THE GENERATED ASSEMBLY

config const n = 16;
var A: [1..n] real(32);

proc foo() {
foreach i in 1..n {

A[i] = sqrt(i:real(32));
}

}
foo();

$ chpl program.chpl --fast \
--llvm-print-ir foo \
--llvm-print-ir-stage asm

Disassembling symbol foo_chpl

... output showing vsqrtss instruction ...

REDUCING COMPILATION TIME

Reduced Polynomial Overhead in Compiler

Background: Chapel users and developers are understandably annoyed by slow compilation times
• Long-term, ‘dyno’ is being designed and engineered to help reduce compilation times
• In the meantime, large applications like Arkouda are suffering

This Effort: Eliminated one source of polynomial overhead in the compiler
• For each routine returning ‘true’/’false’/’void’, the compiler looked at all occurrences of that value in the program

– This included a huge number of occurrences internal to the compiler

Impact: 20% reduction in Arkouda build time

Next Steps: Continue speeding up the compiler
• Look for similar sources of overhead in production
• Continue improving ‘dyno’s resolution capabilities
• Goal: make it the production resolver

6

REDUCING COMPILATION TIME

Background: The compiler allocates many objects
• ~7 million allocations for ‘chpl examples/hello.chpl’
• Previous releases added the option to build the compiler with ‘jemalloc’, which improves allocation performance
• Users had to opt-in to using ‘jemalloc’ to benefit from improvements

This Effort: Made ‘jemalloc’ the default for building the compiler whenever possible

Impact: 25% reduction in Arkouda build time

Building Compiler with ‘jemalloc’

7

REDUCING COMPILATION TIME

ARRAY CREATION OPTIMIZATIONS

Background and This Effort

Background: Chapel uses privatization to replicate distributed domain and array metadata to all locales
• Privatization increases creation time, but speeds up later uses
• Creation time is not a bottleneck for many codes

– Tends to be outside timed kernels for most benchmarks
– HPC applications tend to create arrays once and heavily reuse them

• Unlike most HPC codes, Arkouda frequently creates new arrays
– A recent operation to display a summary of a DataFrame (DF) creates dozens of small arrays
– This motivated trying to improve array creation speed

This Effort: Optimized distributed domain and array privatization
• Improved communication strategy used to broadcast metadata
• Eliminated re-privatization when creating rectangular domains

9

ARRAY CREATION OPTIMIZATIONS

Impact

• Improved performance for distributed domain and array creation
• Non-trivial speedup for many Arkouda operations, especially when combined with ‘SymEntry’ optimizations

10

ARRAY CREATION OPTIMIZATIONS

0

1

2

3

4

5

6

7

8

Domain Array

T
im

e
(m

s)

16-node Block Domain/Array Creation

Chapel 1.28 Chapel 1.29

Benchmark Before After Speedup

DF Display 0.8 s 0.4 s 2x

Stream 465 GiB/s 600 GiB/s 1.3x

Scan 580 GiB/s 1010 GiB/s 1.7x

16-node Arkouda

fa
st
er

Next Steps

• Further optimize domain and array creation
• Implement minor communication and allocation reductions for ‘BlockDist’
• Reset task placement to improve cache reuse between domain and array creation
• Explore replacing eager privatization with on-demand forwarding

11

ARRAY CREATION OPTIMIZATIONS

PARALLEL ARRAY
DEINITIALIZATION

Background and This Effort

Background: Array elements are initialized in parallel, but were historically deinitialized serially
• Parallel init is important for first-touch and speeding up memory fault-in for all types
• Many types do not require deinit

– Only complex types like domains/arrays and records/classes with ‘deinit()’ methods

• Historically, trying to parallelize deinit resulted in large regressions for array-of-arrays
– Caused by contention on a lock used to implement domain reference counting and array tracking
– These overheads have been reduced in recent releases, but not eliminated

• Recently-added Arkouda ‘bigint’ arrays were impacted by slow serial deinitialization
– Motivated revisiting parallel deinitialization

This Effort: Parallelized array deinitialization for all types
• Uses the same size heuristics as parallel initialization

13

PARALLEL ARRAY DEINITIALIZATION

Impact

• Faster array deinitialization for many types that require deallocation, including Arkouda ‘bigint’ arrays

• Slower array-of-arrays deinitialization, though still faster than initialization

14

PARALLEL ARRAY DEINITIALIZATION

fa
st
er

fa
st
er

Next Steps

• Reduce overheads for initializing and deinitializing array-of-arrays
• Reduce need for locking by using atomic counter for reference counting
• Do bulk reference counting for array-of-arrays
• Explore eliding reference counting if compiler can prove lifetimes

15

PARALLEL ARRAY DEINITIALIZATION

DOCKER CHANGES

Background:
• Previous Dockerfile fetched latest release’s source tarball from GitHub and built that release’s image

– Only provided pre-built LLVM backend

This Effort:
• Modified Dockerfile to build from its containing Chapel source tree and build the C backend as well

Impact:
• Enabled building and using Chapel Docker images from any version of Chapel source code

– Can build images from specific commits
– More in line with general practice for Dockerfiles
– Removes the necessity of fetching the latest release
– Allows creation of a CI job to test building Docker image from latest source

• C backend can be used to reduce time or memory overheads when compiling Chapel programs

17

DOCKER CHANGES

LLVM STATUS

Background:
• LLVM is Chapel’s recommended backend

– Versions 11–14 are supported and tested nightly
– Version 15 removed support for typed pointers, which the Chapel compiler has relied upon

This Effort:
• Started adjusting the LLVM backend to stop using typed pointers

– Manually tracking types for LLVM pointers where needed

Status:
• More work remains before Chapel can support LLVM 15

Next Steps:
• Make LLVM 15 the default

– Continue adjusting the backend to use opaque pointers

19

LLVM STATUS

PORTABILITY AND PREREQUISITES

Background: Have been gradually improving portability of Chapel on a variety of Unix systems
This Effort: Performed ad hoc testing with many current operating systems
Status: Verified portability to 12 OS distributions and 32 versions:

• ‘make’ and ‘make check’ work with or without the system LLVM package on the following systems:

• ‘make’ and ‘make check’ work with ‘quickstart’, but the system LLVM package cannot be used

Next Steps: Automate this portability testing to run it more frequently

21

PORTABILITY

• Alma Linux 8, 9.0, 9.1
• Alpine Linux 3.15, 3.17
• Amazon Linux 2
• Arch linux (March 2023 version)
• CentOS Stream 8, 9
• Debian 10, 11, 12
• Fedora 34, 35, 36

• FreeBSD 12.2, 12.4, 13.1
• Mac OS X (with Homebrew)
• OpenSuse Leap 15.3, 15.4
• Rocky Linux 8, 9.0, 9.1
• Ubuntu 20.04, 22.04, 22.10
• Ubuntu 22.04 with Homebrew

• Amazon Linux 2023
• CentOS 7 with Devtoolset 11

• Fedora 37, 38

Background: Chapel requires some tools to be pre-installed in order to build correctly
This Effort: Wrote scripts to automatically generate platform-specific prerequisite docs

• lists commands for installing required packages based on portability testing results
Impact: Users with tested distributions can easily find commands to install prerequisites

22

PREREQUISITES DOCUMENTATION

DOCUMENTATION IMPROVEMENTS

Background and This Effort

Background:
• For 2.0, beyond keeping documentation up-to-date, we’ve also been improving descriptions of existing features
• Recent releases have particularly focused on the “Built-in Types and Functions” section of the docs

– These were topics that were technically part of the language, yet whose documentation was generated by ‘chpldoc’

This Effort:
• Folded the remaining “Built-in Types and Functions” topics from Chapel 1.28 into the language specification
• Clarified the language specification with respect to several features:

– abstract argument intents
– storage of records with array fields
– ‘out’ arguments and split initialization
– ‘yield’ semantics
– re-exporting symbols
– non-promoted arguments in promoted expressions
– definitions of subroutine bodies

• Also improved documentation for several standard modules

24

DOCUMENTATION IMPROVEMENTS

Impact and Next Steps

Impact:
• The “Built-in Types and Functions” section of the sidebar no longer exists:

• Chapel’s documentation continues to reflect the language better and more accurately going into Chapel 2.0
Next Steps: Continue improving docs as we approach Chapel 2.0

25

DOCUMENTATION IMPROVEMENTS

OTHER IMPLEMENTATION /
PACKAGING IMPROVEMENTS

For a more complete list of implementation and packaging changes and improvements in the
1.29.0 and 1.30.0 releases, refer to the following sections in the CHANGES.md file:

• ‘Configuration / Build / Packaging Changes’
• ‘Tool Improvements’

• Compilation-Time / Generated Code Improvements’
• ‘Performance Optimizations / Improvements’
• ‘Language Specification Improvements’ and ‘Other Documentation Improvements’

• ‘Portability / Platform-specific Improvements’
• ‘Compiler Improvements’ and ‘Compiler Flags’

• ‘Error Messages / Semantic Checks’
• ‘Bug Fixes’
• ‘Third-Party Software Changes’

• ‘Developer-oriented changes: …’

27

OTHER IMPLEMENTATION / PACKAGING IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.30/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

