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BACKGROUND AND GOALS



• dyno is an ongoing effort to address problems with the Chapel compiler
• Focused on improving:

• Speed
• Error messages
• Compiler structure and program representation
• Compiler development

• Recent work has focused on:
• Replacing the early compilation passes with incremental versions, including an incremental resolver
• Improving error messages
• Demonstrating an early form of separate compilation
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COMPILER REWORK EFFORT



Incremental Compilation Front-end
• Only re-parse and do type resolution on files that were edited

– Could result in reducing compilation time

• Will still have the whole-program optimization and code-generation back-end

Separate Compilation
• Make most of the optimizations happen per-file
• Will need a linking step for optimizations like function inlining that span files
• Should result in significantly faster compilation times

Dynamic Compilation and Evaluation
• Enable Chapel code snippets to be written and run interactively

– e.g., in Jupyter notebooks
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COMPILER REWORK DELIVERABLES

Throughout the effort,
improve the learning curve

and error messages



PROGRESS SINCE 1.28



1. Getting the dyno scope resolver ready for use in production
– Goal was to use it in production in 1.30
– Just missed the 1.30 release; already enabled on ‘main’ for the 1.31 release cycle

2. Building more components of the dyno resolver to reach feature-completeness
– Goal was to have initial implementations of remaining major components of the new resolver by 1.30
– Goal met: have at least draft components for all major areas & much work remains

3. Designing and implementing file formats and commands for separate compilation
– Goal was to implement uAST serialization/deserialization, draft file format, and prototype separate compilation commands
– Goal met: precompiled-header style support is in 1.30

4. Begin to improve error messages
– Goal was to migrate errors from parsing and dyno scope resolution to a more user-friendly format by 1.29
– Goal met: as of 1.30, parsing, checks, and new scope resolver errors include more user-friendly variants
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SUMMARY OF PROGRESS TOWARDS 1.29 AND 1.30 GOALS



• Building the compiler with CMake
– A new goal since 1.28
– Now complete

• Investigating a compiler driver approach
– A new goal since 1.28
– Created a prototype but it needs more work
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SUMMARY OF PROGRESS TOWARDS NEW GOALS



SCOPE RESOLUTION



• Scope resolution is the process of matching identifiers with declared symbols
• For example, in the following code, the ‘arg’ being printed refers the ‘arg: string’ formal

proc printArg(arg: string) {
writeln(arg);

}

• Scope resolution is the next pass in the production compiler that we want to move to dyno
• Involves re-implementing it in the new incremental framework

• In 1.28:
• a ‘--dyno’ flag was added to use dyno for scope resolution
• the dyno scope resolver could handle 13,626 out of 14,020 test cases (97%)

– caveat: only running the new scope resolver on user code (in order to enable incremental progress)

• new scope resolver leaned on old compiler for some unhandled cases
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SCOPE RESOLUTION: BACKGROUND



Further improved the dyno scope resolver to make it production-ready

• Added support for missing features
• ‘private’ keyword, shadow scopes, record/class fields, …

• Enabled scope-resolving the built-in modules
• Still leaning on production scope resolver to handle gaps in implementation
• All tests pass (14518/14518)
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SCOPE RESOLUTION: THIS EFFORT



Impact:
• Dyno scope resolver received numerous improvements, is now the default on ‘main’ (post-1.30)
• Users will see better error messages for errors reported during scope resolution

– errors can now describe where a symbol came from
– implemented improved errors for redefinition, unknown variables and modules, …

• Found bugs in production scope resolution and gaps in the language specification

Next Steps:
• Identify and fix gaps in the dyno scope-resolver that are currently handled by the production scope resolver
• Disable the production scope resolver in favor of the dyno scope resolver
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SCOPE RESOLUTION: IMPACT AND  NEXT STEPS



TYPE AND CALL RESOLUTION



• Resolving includes resolving types and resolving calls
var x = "hello";  // resolving a type: determine that ‘x’ has the type ‘string’

f(1);             // resolving a call: determine that ‘f(1)’ calls ‘f’ below
proc f(arg: int) {}

• Resolution implements a large part of Chapel’s semantics
• It is also one of the major bottlenecks in the production compiler

• A new incremental resolver is part of the dyno effort

• Approach: get a draft of each major component in order to
1. Raise language design issues before language stabilization
2. Demonstrate integration of all resolver components in the new resolver effort
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RESOLVING TYPES AND CALLS: BACKGROUND



• Currently have draft implementations for handling the following features:
– progress since Sept 2022 in bold — many of these need more work
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RESOLVING TYPES AND CALLS: STATUS

• generic instantiation
• param folding
• implicit conversions
• tuple types
• type construction
• varargs functions
• loop index variables
• param loops
• enums
• method calls
• function disambiguation
• ‘new R( )’ runs ’R.init( )’ 

• ‘?t’ in formals
• caching of instantiations
• compiler-generated functions
• fields
• parenless methods
• split init
• copy elision
• task/loop intents

• initializer bodies
• split init and copy elision
• operator overloads

• reductions
• task/loop intents
• const checking
• ‘forwarding’
• return intent overloading
• ref-if-modified for e.g. arrays
• generating calls e.g. ‘deinit’
• error types for ‘catch’
• arrays & domains
• try / throws checking
• reflection



SEPARATE COMPILATION



Background: Separate compilation has been a long-desired feature for Chapel

This Effort: Added experimental support for libraries that store pre-parsed ‘.chpl’ files
• Introduced serialization in frontend for uAST and some internal types

– uAST is dyno’s internal representation of a program

• Stored in ‘.dyno’ files which can be used on the command line with ‘chpl’
– Note: the ‘.dyno’ filetype is an unstable prototype
$ chpl --dyno-gen-lib MyLibrary.chpl # creates ‘MyLibrary.dyno’
$ chpl MyApp.chpl MyLibrary.dyno # skips parsing for “MyLibrary”

Status: Made a first step towards separate compilation
• Will build upon serialization infrastructure for future efforts

Next Steps:
• Choose user-facing flags and file extension
• Explore storing compiled concrete functions in library files
• Improve performance and space efficiency
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SEPARATE COMPILATION



IMPROVED ERROR MESSAGES



• Since 1.28, started implementing a new error message system
• inspired by languages such as Elm, Rust
• goal is to make clearer, more specific, better-looking error messages
• implemented new error messages in the new components

– as dyno’s resolver takes over more functionality, more errors will be improved

• Error system features:
• Detailed and brief verbosity modes aimed at experts and new users, respectively
• Detailed mode includes code printing and underlining
• Each error has a name (e.g. ‘Deprecation’, ‘IncompatibleIfBranches’)

– Intended for use with silencing / escalation, linking documentation
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IMPROVED ERROR MESSAGES: THIS EFFORT



program.chpl

1. module Lib1 { }
2. module Lib2 {
3. var a: int;
4. }

5. module T2 {
6. public use Lib1, Lib2;
7. var a: real;
8. proc main() {
9. writeln(a);
10. }
11. }
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IMPROVED ERROR MESSAGES: EXAMPLE

Error (production compiler):

program.chpl:7: error: symbol a is multiply defined
program.chpl:3: note: also defined here

Error (dyno, brief):

program.chpl:5: In module 'T2':
program.chpl:7: error: 'a' has multiple definitions
program.chpl:6: note: redefined through the 'use' statement here
program.chpl:3: note: leading to the definition here

Mentioning ‘a’ no longer required to trigger the  error

Additional context

More information about the 
source of the conflict



Error (dyno, detailed):

─── error in program.chpl:7 [Redefinition] ───
'a' has multiple definitions.
It was first defined here:

|
7 |    var a: real;
|        ⎺⎺⎺⎺⎺⎺⎺⎺
|

Redefined through the 'use' statement here:
|

6 |    public use Lib1, Lib2;
|                     ⎺⎺⎺⎺
|

Leading to the definition here:
|

3 |    var a: int;
|        ⎺⎺⎺⎺⎺⎺⎺
|
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IMPROVED ERROR MESSAGES: EXAMPLE, DETAILED OUTPUT

Includes name of error

Underlined relevant part of ‘use’

Additional, plain English description

program.chpl

1. module Lib1 { }
2. module Lib2 {
3. var a: int;
4. }

5. module T2 {
6. public use Lib1, Lib2;
7. var a: real;
8. proc main() {
9. writeln(a);
10. }
11. }



Status:
• Parsing errors, control flow checks now use the new error message format
• Dyno scope resolver (off by default, enabled with ‘--dyno’) also uses new format 

Next Steps:
• Continue migrating error messages
• Continue to improve the detailed error format
• Resolve open questions around displaying errors that span multiple files, line breaking and wrapping
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IMPROVED ERROR MESSAGES: STATUS, NEXT STEPS



BUILDING THE COMPILER 
WITH CMAKE



Background: Chapel has historically relied on Makefiles to build compiler, runtime, and tool components
• However, LLVM requires CMake
• CMake is also the preferred way to build the new dyno frontend and is required to build it as a library

– frontend was temporarily adjusted to also include Makefiles to support building ‘chpl’ and ‘chpldoc’

This Effort: Use CMake behind-the-scenes to build ‘chpl’ and ‘chpldoc’

Impact: Improves developer QOL while maintaining compatibility with existing build scripts
• existing ‘make’ commands work as before
• new CMake targets integrate nicely with IDEs and provide enhanced lookup features for symbols
• faster parallel builds
• direct use of CMake allows developers to opt into generating Ninja build system files rather than Makefiles

Next Steps: Migrate additional components away from Makefiles as needed
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BUILDING WITH CMAKE



MIGRATING TO A COMPILER DRIVER



Background: The Chapel compiler process remains live during backend compilation
• System memory used by the earlier parts of Chapel compilation remains in use during backend C / LLVM linking
• Results in higher memory pressure than necessary

This Effort: Explored using a compiler driver with subprocesses for each phase of compilation
• This is common: both Clang and GCC use a compiler driver
• ‘chpl’ can act as the driver and provide outputs from one phase as inputs to another phase

Status: Prototyped on a feature branch
• Prototype can compile most code with C or LLVM backend

Next Steps: Resolve remaining bugs and test failures
• Improve prototype to production quality and add more testing
• Gather data on performance changes and consider changing to use driver mode by default
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COMPILER DRIVER



DYNO GOALS FOR 1.31 AND 1.32



Dyno efforts will include these separable directions of effort, approximately in priority order

1. Frontend Integration & Improving New Resolver
– Goal: able to disable production scope resolver by 1.31
– Goal: new resolver works in opt-in mode for end-to-end compilation for most tests by 1.32

2. Separate Compilation
– Goal: Demonstrate a concrete function saved in the library files by 1.32

3. Incremental Compilation
– Goal: Demonstrate live scope resolution from an editor by 1.31

4. Compiler Driver
– Goal: Get opt-in compiler driver support merged for 1.31

• While working on (1) above, taking care to help with language stabilization efforts
• The dyno effort has been identifying language issues at a steady pace so far
• Raising and addressing language features that seem poorly specified, not specified, or that are too confusing
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SUMMARY OF DYNO’S GOALS FOR 1.31 AND 1.32



OTHER DYNO IMPROVEMENTS



For a more complete list of dyno changes and improvements in the 1.29.0 and 1.30.0 releases, refer 
to the following section in the CHANGES.md file:

• Developer-oriented changes: 'dyno' Compiler improvements/changes
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OTHER DYNO IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.30/CHANGES.md


THANK YOU

https://chapel-lang.org
@ChapelLanguage


