
CHAPEL 1.31/1.32 RELEASE NOTES:
LIBRARY IMPROVEMENTS

Chapel Team
June 22, 2023 / September 28, 2023

OUTLINE

• Distribution Improvements
• 'c_ptr' Improvements
• Chapel 2.0 Stabilization
• Stabilization: Next Steps
• Other Library Improvements

IMPROVEMENTS TO
STANDARD DISTRIBUTIONS

DISTRIBUTION
IMPROVEMENTS

• Distributions as Records
• Distribution Factory Methods
• Redistributing Block Arrays
• Optimized Swaps

CONVERTING DISTRIBUTIONS
TO RECORDS

• Historically, distributions have been implemented as ‘class’ types in Chapel (e.g., ‘Block’ is a class)
• This made them something of an outlier in Chapel’s standard libraries

– Most library-based types are records, for simplicity: no need to worry about ownership types, nilability, etc.

• When declaring named distributions, best practice has been to wrap them with a ‘dmap’ record type
• Gave them value semantics, providing symmetry with domains and arrays

var myDist = new dmap(new Block(boundingBox={1..4, 1..8});

• The ‘dmap’ type has always been a bit unpopular and obscure
• In most cases, it could be avoided by just distributing domains directly

var Dom = {1..n, 1..n} dmapped Block({1..n, 1..n});

• Yet, being able to declare and reuse named distributions remains valuable
– amortizes overheads, guarantees alignment
var Dom1 = {1..n, 1..n} dmapped myDist,
 Dom2 = {0..n+1, 0..N+1} dmapped myDist;

Background

6

DISTRIBUTIONS AS RECORDS

• Decided to work toward deprecating the ‘dmap’ type to avoid being stuck with it in Chapel 2.0

• Changed standard distribution types from classes into records
• Provides the convenience and consistency of a value type
• Removes the need for the ‘dmap’ wrapper type

• Renamed distribution types—e.g., ‘Block’ is now named ‘blockDist’
• Renaming has several benefits:

– matches standard module style guide for record naming (camelCase)
– clarifies the type’s role (e.g., ‘block’ is a very general term)
– avoids using potentially common identifiers (e.g., ‘block’ is frequently used for various unrelated things)
– improves symmetry with the module type (i.e., the ‘BlockDist’ module defines the ‘blockDist’ type)

• Note that old names still work within standard code patterns, but generate a deprecation warning

This Effort

7

DISTRIBUTIONS AS RECORDS

Status:
• Applied changes in previous slide to all standard multi-locale distribution modules:

– BlockDist, CyclicDist, StencilDist, ReplicatedDist, PrivateDist, HashedDist, BlockCyclicDist, DimensionalDist2D

• Single-locale layouts have yet to be updated
– DefaultDist, CS

Impact:
• The ‘dmap’ type is no longer required to declare new distribution values
• Code involving distributions is now a bit more straightforward:

– e.g.,
 var myDist = new dmap(new Block(boundingBox={1..4, 1..8});

 would now be written:
 var myDist = new blockDist(boundingBox={1..4, 1..8});

Status and Impact

8

DISTRIBUTIONS AS RECORDS

Short-term:
• Convert standard layouts to records as well
• Deprecate the ‘dmap’ type

Medium-term:
• Look for additional opportunities for refactoring to enable code re-use and minimize boilerplate
• Improve documentation for creating distributions with a “how to” guide

Longer-term:
• Convert the standard domain map API from a convention to a set of standard interfaces

Next Steps

9

DISTRIBUTIONS AS RECORDS

DISTRIBUTION FACTORY METHODS

Background

• There has been a longstanding desire to replace the 'dmapped' keyword with new syntax
• Like the ‘dmap’ type, the ‘dmapped’ keyword and syntax have not been very popular or memorable

• As design progresses, existing distribution factory methods provide a stable alternative

11

DISTRIBUTION FACTORY METHODS

This Effort

• Marked 'dmapped’ syntax as unstable
• Factory methods are a stable alternative for 'blockDist’, 'cyclicDist’, and ‘stencilDist’, e.g.,

/* unstable: */ var dom = {1..n} dmapped blockDist({1..n});
/* stable: */ var dom = blockDist.createDomain(1..n);

• Improved and unified factory methods on ‘blockDist’, ‘cyclicDist’, and ‘stencilDist’
• Added an instance-method overload of 'createDomain’, e.g.,

 var dom = myBlockDist.createDomain(1..n);

– Rationale: without ‘dmapped’, this is currently the only stable way to have multiple domains share a single distribution

• Added an optional 'targetLocales' argument to 'createDomain' and 'createArray' factory methods, e.g.,
 var dom = blockDist.createDomain({1..n}, targetLocales=myLocales);
 var arr = blockDist.createArray({1..n}, int, targetLocales=myLocales);

• Added unstable overloads of 'createArray' that accept various expressions to initialize the array, e.g.,
 var A1 = blockDist.createArray({1..5}, int, 1); // [1, 1, 1, 1, 1]
 var A2 = blockDist.createArray({1..5}, int, [1, 2, 3, 4, 5]); // [1, 2, 3, 4, 5]
 var A3 = blockDist.createArray({1..5}, int, [i in {1..5}] i*i); // [1, 4, 9, 16, 25]

12

DISTRIBUTION FACTORY METHODS

Impact and Next Steps

Impact:
• Unified factory method interfaces across our most stable distributions
• Expanded functionality for a stable alternative to 'dmapped'

Next Steps:
• Extend factory methods to other distributions as part of stabilizing them
• Design alternate syntax to directly replace 'dmapped' [#23128, #23328, #23331]

13

DISTRIBUTION FACTORY METHODS

https://github.com/chapel-lang/chapel/issues/23128
https://github.com/chapel-lang/chapel/issues/23328
https://github.com/chapel-lang/chapel/issues/23331

REDISTRIBUTING BLOCK ARRAYS

• Block-distributed arrays are characterized by a “bounding box”
• specifies which d-dimensional indices are block-distributed across locales (as evenly as possible)
• indices outside the bounding box map to the same locale as their closest interior neighbor

var myDist = new blockDist(boundingBox={1..4, 1..8});

• Traditionally, this box could not be changed once a distribution object was created

Background

15

REDISTRIBUTING BLOCK ARRAYS

0 1 2 3

4 5 6 7
targetLocales

1

1

4

8

0
-1

-1 0 … ……

…
…

This Effort

• Added initial support for redistributing a block distribution, as long as no arrays need to be preserved
• supports the common case of wanting to change the distribution shortly after declaration, before arrays exist

var myDist = new blockDist(boundingBox={1..4, 1..8});
myDist.redistribute({1..5, 1..10}); // or: myDist = new blockDist({1..5, 1..10});

• Notably, no compiler or language changes were required to add this capability

16

REDISTRIBUTING BLOCK ARRAYS

0 1 2 3

4 5 6 7
targetLocales

1

4

8
-1

-1…

0

0 1 … …

…
…

Status and Next Steps

Status:
• Users can now change a Block distribution’s mapping before any domains or arrays are declared over it
• They can also redistribute Block-distributed arrays, as long as no data needs to be preserved

– the current best practice is to:
– deallocate any arrays over the distribution by making their domains empty (e.g., ‘Dom = {1..0};’)
– redistribute the block distribution

– re-allocate the arrays according to the new distribution by re-assigning the domains to their desired sizes

– changing a distribution in other ways may result in undefined behavior for its domains and arrays

• We now have a proof-by-example that Chapel can support redistribution, as anticipated

Next Steps:
• Add the ability to preserve array values when redistributing a block distribution
• Consider adding the ability for a non-initialized Block distribution to use its first domain as its bounding box

var Dom = {1..n, 1..n} dmapped new blockDist(); // note the lack of a ‘boundingBox’ argument

• Consider extending support for redistribution to other distributions
• Consider renaming ‘boundingBox’ argument before 2.0?

17

REDISTRIBUTING BLOCK ARRAYS

OPTIMIZED SWAP FOR
CYCLIC-/STENCIL-DISTRIBUTED
ARRAYS

Background, This Effort, and Status

Background: Chapel 1.23 added an array swap optimization for default- and Block-distributed arrays
var A, B: [1..n] real;
A <=> B; // optimized this to use a pointer swap rather than a deep copy (and similarly for Block-distributed arrays)

This Effort: Extended this optimization to Cyclic- and Stencil-distributed arrays

Status: Cases like the following are now optimized to use a pointer swap as well:
var CycDom = cyclicDist.createDomain({1..n, 1..n});
var C, D: [CycDom] real;
C <=> D;

var StencilDom = stencilDist.createDomain({1..n, 1..n});
var E, F: [StencilDom] real;
E <=> F;

19

OPTIMIZED ARRAY SWAP

Impact and Next Steps

Impact:
• Reduced time required to swap between Cyclic- or Stencil-distributed arrays

– e.g., the following heat solver computations utilize array swaps between time steps:

Next Steps:
• Continue seeking out and addressing cases where Block-distributed arrays outperform Cyclic and Stencil
• As other distributions are stabilized, look for additional opportunities to apply this optimization
• Look into ways to refactor this optimization to simplify applying it to new distributions, and for code re-use

20

OPTIMIZED ARRAY SWAP

swap optimization enabled

‘C_PTR’ IMPROVEMENTS

Background

• The Chapel ‘c_ptr’ type represents a C pointer within Chapel
• Used primarily for C interoperability — ‘c_ptr(T)’ corresponds to C’s ‘T*’
• Also used for pointers within Chapel, which are not otherwise exposed
• Acquired either from calling extern C code, or via ‘c_ptrTo’:

extern proc myExternFunc(): c_ptr(c_int); // extern declaration to call C function
var myPtr: c_ptr(c_int) = myExternFunc(); // a ‘c_ptr’ from C

var x: int = 5;
var myOtherPtr: c_ptr(int) = c_ptrTo(x); // a ‘c_ptr’ entirely within Chapel

22

‘C_PTR’ IMPROVEMENTS

Background

• ‘c_ptrTo’ has had special behavior on arrays
• Returns a pointer to the first element instead of the array’s metadata

• ‘c_ptr’ also had some limitations / non-orthogonalities:
• Had to use a separate ‘c_void_ptr’ type to represent a ‘void*’, with casting/implicit conversion to ‘c_ptr’
• Could be dereferenced to mutate the pointee

– No way to represent a const pointer ‘const T*’
– Couldn’t create a ‘c_ptr’ to a const variable via ‘c_ptrTo’

• Could cast between ‘c_ptr’s of different pointee types without regard for C’s strict aliasing rules

23

‘C_PTR’ IMPROVEMENTS

This Effort

• Extended the value-based ‘c_ptrTo’ behavior on arrays to additional types
• ‘string’ and ‘bytes’: Returns a ‘c_ptr(c_uchar)’ to the start of the underlying buffer
• Class types: Returns a ‘c_ptr(void)’ to the heap-allocated instance of the class variable
• Behavior transition controlled by compile-time ‘-scPtrToLogicalValue’ flag

• Added simpler ‘c_addrOf’ procedure that avoids the special behavior above for all types
• Logically corresponds to C’s address-of operator ‘&’

use CTypes;
class Foo {}
var myFoo = new owned Foo(); // similar behavior with shared, unmanaged, etc.
writeln(c_addrOf(myFoo)); // stack address of pointer to heap-allocated object

writeln(c_ptrTo(myFoo)); // heap address of the Foo instance

// create “another” Foo, pointing to the same instance
var anotherFoo = (c_ptrTo(myFoo):unmanaged Foo?)!;

24

‘C_PTR’ IMPROVEMENTS

This Effort

• Replaced ‘c_void_ptr’ with ‘c_ptr(void)’
• Still prevents dereferencing

• Added ‘c_ptrConst’ type, like ‘c_ptr’ but with const pointee
• Acquired via new ‘c_ptrToConst’, or external procedures
• Special behavior above also applies to ‘c_ptrToConst’

const oldStr: string = "foo"; // ‘c_ptrTo(oldStr)’ would yield “error: const actual is passed to ‘ref’ formal”
var newStr: string = "bar";
extern proc strcpy(dest: c_ptr(c_uchar), src: c_ptrConst(c_uchar));
strcpy(c_ptrTo(newStr), c_ptrToConst(oldStr));

var x : int = 5;
var mutablePtr = c_ptrTo(x);
mutablePtr.deref() += 1; // ok
var constPtr = c_ptrToConst(x);
constPtr.deref() += 1; // error: cannot assign to const variable

• Added warning for ‘c_ptr’ casts that violate C’s strict aliasing rules

25

‘C_PTR’ IMPROVEMENTS

Impact and Next Steps

Impact:
• New ‘c_ptrTo’ functionality provides useful behavior in more cases

– ‘c_ptr’s to ‘string’ and ‘bytes’ values more closely correspond to C behavior
– Clarifies distinction between ’c_ptr’s to class heap instances, and to memory-management stack structures

• ‘c_ptr(void)’ unifies behavior and implementation with other ‘c_ptr(T)’s, less special-casing
• Can now represent C const pointers (‘const T*’)

– Previously, had to (incorrectly) disregard constness in extern C function signatures with const pointers
– Allows creating ‘c_ptr’s to ‘const’ Chapel variables

• Prevents unintentional undefined behavior via ‘c_ptr’ casts between pointee types

Next Steps:
• Explore techniques to mitigate pitfall of creating invalid ‘c_ptr’s across locales
• Consider separate types for C interoperability and user-facing memory buffer [#16797]

26

‘C_PTR’ IMPROVEMENTS

https://github.com/chapel-lang/chapel/issues/16797

CHAPEL 2.0 LIBRARY
STABILIZATION

Background and Status

Background:
• Chapel 2.0 is an upcoming release in which core language and library features will be considered stable

– Stable: Going forward, all changes will be backwards-compatible
– Users should be able to depend on anything not noted as ‘unstable’ to continue working through all 2.X releases

– Such features are noted as unstable in the documentation and/or will trigger warnings when using ‘--warn-unstable’

• Our primary focus has been on standard library stabilization

Status In Numbers:
• 39 modules reviewed
• 35 modules stabilized
• 10 standard modules that we’ve decided not to stabilize before Chapel 2.0:

– CommDiagnostics, Memory[.Diagnostics], GMP, DynamicIters, VectorizingIterator, Help, GPU, GpuDiagnostics, Random, Heap

28

CHAPEL 2.0 LIBRARY STABILIZATION

1.30 Status

29

CHAPEL 2.0 LIBRARY STABILIZATION
Bu

ilt
in

s
Ch

pl
Co

nf
ig

Li
st

M
ap

Se
t

Fi
le

Sy
st

em
IO Pa

th
R

ef
le

ct
io

n
T

yp
es

Bi
gI

nt
eg

er
M

at
h/

A
ut

oM
at

h
R

an
do

m
Co

lle
ct

iv
es

CT
yp

es
Su

bp
ro

ce
ss

Sy
s

Sy
sB

as
ic

Sy
sE

rr
or

R
eg

ex
T

im
e

V
er

si
on

St
rin

g
/

By
te

s
R

an
ge

s
D

om
ai

ns
A

rr
ay

s
Sh

ar
ed

 /
 O

w
ne

d
Er

ro
rs

M
em

M
ov

e
Lo

ca
le

s
Sy

nc
/S

in
gl

e
A

to
m

ic
s

Bi
tO

ps

1.28

1.29

1.30

Vetted Progress Review Started X Not for 2.0

1.32 Status

30

CHAPEL 2.0 LIBRARY STABILIZATION
Bu

ilt
in

s
Ch

pl
Co

nf
ig

Li
st

M
ap

Se
t

Fi
le

Sy
st

em
IO Pa

th
R

ef
le

ct
io

n
T

yp
es

Bi
gI

nt
eg

er
M

at
h/

A
ut

oM
at

h
R

an
do

m
Co

lle
ct

iv
es

CT
yp

es
Su

bp
ro

ce
ss

Sy
s

Sy
sB

as
ic

Sy
sE

rr
or

R
eg

ex
T

im
e

V
er

si
on

St
rin

g
/

By
te

s
R

an
ge

s
D

om
ai

ns
A

rr
ay

s
Sh

ar
ed

 /
 O

w
ne

d
Er

ro
rs

M
em

M
ov

e
Lo

ca
le

s
Sy

nc
/S

in
gl

e
A

to
m

ic
s

Bi
tO

ps

1.30

1.31 X

1.32 X

Vetted Progress Review Started X Not for 2.0

LIBRARY
STABILIZATION
OUTLINE

• IO
• Math/AutoMath
• BigInteger
• Collection Types
• Errors
• Collectives
• Time
• FileSystem
• Reflection
• CTypes
• ChplConfig
• BitOps

I/O MODULE

I/O SERIALIZERS

I/O SERIALIZERS
OUTLINE

• Background
• High-Level Usage
• Custom Type Serialization
• Implementing (De)Serializers
• Status and Next Steps

BACKGROUND

Background

• Historically, non-default I/O formats consisted of a fixed set of options embedded in the ‘IO’ module
• Adding new formats presented difficulty and was not user-facing

• The ‘iostyle’ record could be used to tweak various details of reading or writing
• For example, setting the starting/ending character for a string
• Supported over a dozen settings to support different formats

• Binary I/O was generally configured using ‘iostyle’ or ‘iokind’ types
• ‘iokind’ indicated endianness, could only be set when the channel was created, and was poorly named

• JSON and “Chapel syntax” formats supported by ‘%jt’ and ‘%ht’ format specifiers
• These were hard-coded into the ‘readf’/’writef’ implementations
• Behind the scenes, used a mixture of ‘iostyle’ options and specialized implementations

36

I/O SERIALIZERS

Background

• For user-defined types, the ‘IO’ module invoked ‘readThis’ and ‘writeThis’ methods
• For reading, required an initialized value to already exist
• An example ‘writeThis’ method:

proc MyRecord.writeThis(f: fileWriter(?)) {
 f.writeln(this.id, ": ", this.data);
}

• These methods could be compiler-generated with somewhat flexible default behavior
• For example, "print all fields in declaration order"
• Provided basic support for the “default”, JSON, or “Chapel syntax” formats

• However, user-defined ‘readThis’/’writeThis’ methods were not so flexible
• Supporting built-in formats (e.g., JSON) required using esoteric ‘iostyle’ settings
• Even implementations for types in the standard library were difficult to write and maintain

37

I/O SERIALIZERS

This Effort

• Goals for an alternative way to choose how types are written:
• Do not limit options to fixed set defined in standard ‘IO’ library
• Make it possible for users to add other formats (e.g., YAML, Protobuf, etc)
• Make it easy to write a custom I/O method for a user-defined type once, and have it work with multiple formats

• This new feature will apply to the ‘write’, ‘writeln’, ‘read’, and ‘readln’ methods on ‘fileReader’/’fileWriter’
• Will also be invoked by ‘readf’/’writef’ using new ‘%?’ format specifier

• With this feature, finally deprecate ‘iostyle’ and ‘iokind’
• As well as ‘%jt’ and ‘%ht’

38

I/O SERIALIZERS

This Effort

• In 1.32, we introduce a new way to choose how types are read/written: Serializers and Deserializers
• Or, for brevity, “(De)Serializers”

• ‘fileWriter’ and ‘fileReader’ have an associated serializer or deserializer
• Unless specified, the default (de)serializer will be used, which implements the existing default behavior

• A (De)Serializer must implement an API to be usable
• To be enforced by Chapel interfaces as they mature

• Can be chosen when creating readers or writers, and can be changed on the fly afterward

• 1.32 provides ‘default’, ‘binary’, and ‘JSON’ (De)Serializers
• With package modules for ‘YAML’ and “Chapel syntax” (De)Serializers

39

I/O SERIALIZERS

High-Level API Overview

• The ‘read’/’write’ methods hand off control to (De)Serializers

• (De)Serializers invoke user-defined ‘serialize’ and ‘deserialize’ methods when available

• ‘serialize’/’deserialize’ methods can use a format-agnostic API to comply with multiple formats

• Internally uses lower-level methods on ‘fileWriter’ and ‘fileReader’ to read/write specific characters
• E.g., ‘writeLiteral’, ‘readByte’, etc.
• These low-level methods do not go through the (De)Serializers API

40

SERIALIZER API DESIGN

41

SERIALIZER API DESIGN

fileReader /
fileWriter

file

I/O Runtime

Serializer /
Deserializer

Entry API

Low-level I/O API

User-defined
serialize /
deserialize

method

User Type API

Format Agnostic API

‘read’/‘write’ call

42

SERIALIZER API DESIGN

fileReader /
fileWriter

file

I/O Runtime

Serializer /
Deserializer

Entry API

Low-level I/O API

User-defined
serialize /
deserialize

method

User Type API

Format Agnostic API

‘writeLiteral’ call

HIGH-LEVEL USAGE

Creating fileReader/fileWriter with (De)Serializers

• The ‘fileReader’ and ‘fileWriter’ types can be created with a specific Serializer or Deserializer
• Otherwise, use ‘defaultSerializer’ or ‘defaultDeserializer’ from ‘IO’ module
• Selected by optional ‘serializer’ or ‘deserializer’ arguments in ‘file.reader’, ‘file.writer’, ‘openReader’, or ‘openWriter’

• For example, consider a sample “data.json” file with a single JSON object:
{ "name": "Bob" }

• We can easily read this file into a suitable record in the following example:
use IO, JSON;
record R {
 var name: string;
}
var jsonReader = openReader("data.json", deserializer = new jsonDeserializer());
var r = jsonReader.read(R);
writeln(r); // in ‘default’ format: (name = Bob)

44

HIGH-LEVEL USAGE

(De)Serializer Instances in fileReader/fileWriter

• ‘fileReader’/‘fileWriter’ have ‘.deserializer’/‘.serializer’ methods to access current instance
• This ability exists in case a particular (De)Serializer provides additional non-standard methods for users

• The ‘serializerType’ and ‘deserializerType’ fields support queries and specialization:
// Allow any non-locking fileWriter
proc myFunction(writer: fileWriter(false, ?))
// Specific overload for JSON
proc myFunction(writer: fileWriter(false, serializerType=jsonSerializer))

• The ‘withSerializer’ and ‘withDeserializer’ methods allow for “changing” the format on the fly
• These methods return an alias to the current ‘fileReader’/’fileWriter’ that will always point to the same file offset
• These methods accept either a value or a type that can be default-initialized, for brevity

stdout.writeln("JSON output is:"); // ‘stdout’ uses the default format
stdout.withSerializer(jsonSerializer).writeln(myObj);

45

HIGH-LEVEL USAGE

Example: Mixed Format Binary File

• As an example, read a binary file with a little-endian 'int', a big-endian 'real', and a little-endian 'int'

• Users can configure their readers/writers when created:
use IO; // brings in ‘binaryDeserializer’
var little = new binaryDeserializer(ioendian.little);
var littleReader = myFile.reader(deserializer=little);
var myInt = littleReader.read(int);

• Can also adjust format from an existing reader/writer:
• Here, ‘bigReader’ is an alias of ‘littleReader’ with the same offset in the file, but reads in big-endian

var big = new binaryDeserializer(ioendian.big);
var bigReader = littleReader.withDeserializer(big);
var bigReal = bigReader.read(real);

• After that read, ‘littleReader’ shares the same offset in the file as ‘bigReader’
var littleInt = littleReader.read(int);

46

HIGH-LEVEL USAGE

CUSTOM TYPE SERIALIZATION

The API

• The (De)Serializers API can be broken into roughly three pieces
1. Methods called by the ‘IO’ module to hand off control to a (De)Serializer (relevant for (De)Serializer authors)
2. Methods a (De)Serializer can invoke on user types to allow for customized I/O
3. Methods a user-defined type can invoke on a (De)Serializer to perform format-agnostic I/O

• (De)Serializers support format-agnostic I/O for several kinds of abstract types
• For example, many formats support their own notion of a “List” or “Map”
• A portion of the API is devoted to each kind of abstract type

• See the IO Serializers technote for full details of the API

48

CUSTOM TYPE SERIALIZATION

https://chapel-lang.org/docs/technotes/ioSerializers.html

49

FORMAT-AGNOSTIC API

fileReader /
fileWriter

file

I/O Runtime

Serializer /
Deserializer

Entry API

Low-level I/O API

User-defined
serialize /
deserialize

method

User Type API

Format Agnostic API

‘read’/‘write’ call

Methods on Serializers

• Serializers provide six ‘start’ methods to begin serializing a kind of type
• Type-kinds: Class, Record, Tuple, Array, List, Map

• Each ‘start’ method takes a ‘fileWriter’ and returns an object with methods for the specific type-kind
• Each ‘start’ method also accepts a ‘size’ argument, for example to represent a number of fields or elements

* note: second ‘startClass’ exists to support inheritance

50

FORMAT-AGNOSTIC API

Class Record Tuple Array List Map

startClass startRecord startTuple startArray startList startMap

writeField writeField writeElement writeElement writeElement writeKey

startClass* startDim writeValue

endDim

endClass endRecord endTuple endArray endList endMap

Methods on Deserializers

• Deserializers provide six ’start’ methods to begin deserializing a kind of type

• Each ‘start’ method takes a ‘fileReader’, and returns an object with methods for the specific type-kind
• The various ‘read’ methods accept either a value by ‘ref’, or a ‘type’, to match ‘fileReader.read’

* note: second ‘startClass’ exists to support inheritance

51

FORMAT-AGNOSTIC API

Class Record Tuple Array List Map

startClass startRecord startTuple startArray startList startMap

readField readField readElement readElement readElement readKey

startClass* startDim readValue

endDim hasMore hasMore

endClass endRecord endTuple endArray endList endMap

52

USER TYPE API

fileReader /
fileWriter

file

I/O Runtime

Serializer /
Deserializer

Entry API

Low-level I/O API

User-defined
serialize /
deserialize

method

User Type API

Format Agnostic API

‘read’/‘write’ call

The ‘serialize’ Method

• Users may override default serialization behavior with a ‘serialize’ method
• The ‘serialize’ method is defined by the ‘writeSerializable’ interface:

proc T.serialize(writer: fileWriter(?), ref serializer: ?st) throws

• Example usage: Write a type as an abstract ‘List’:
// first, explicitly indicate interface
record MyList : writeSerializable { ... }

// Write once, use with any Serializer
proc MyList.serialize(writer: fileWriter(?), ref serializer: ?st) throws {
 var ser = serializer.startList(writer, this.numElements); // in JSON, write "["
 for elem in this do
 ser.writeElement(elem); // in JSON, write "," if necessary, then ‘elem’
 ser.endList(); // in JSON, write "]"
}

53

USER TYPE API

The ‘deserialize’ Method

• Users may override default in-place deserialization behavior with a ‘deserialize’ method
• Intended to provide behavior for ‘fileReader.read’ that accepts values by-ref
• The ‘deserialize’ method is defined by the ‘readDeserializable’ interface:

proc ref T.deserialize(reader: fileReader(?), ref deserializer: ?dt) throws

• Example usage: Read a type as an abstract ‘List’:
record MyList : readDeserializable { ... }

// Write once, use with any Deserializer
proc ref MyList.deserialize(reader: fileReader(?), ref deserializer: ?dt) throws {
 this.clear(); // reading in-place, so clear the data
 var des = deserializer.startList(reader);
 while des.hasMore() do
 this.add(des.readElement(this.eltType));
 des.endList();
}

54

USER TYPE API

The Deserializing Initializer

• Users may override default 'read(type)' deserialization behavior with an initializer
• Useful for types that cannot be default-initialized
• The initializer signature is defined by the ‘initDeserializable’ interface:

proc T.init(reader: fileReader(?), ref deserializer: ?dt) throws

• Initializer may throw, but only after all fields are initialized
• Future versions of Chapel may relax this requirement

• Otherwise, works the same as a ‘deserialize’ method

• See IO Serializers technote for information on initializing generic types while deserializing

55

USER TYPE API

https://chapel-lang.org/docs/technotes/ioSerializers.html

Other API Notes

• User types implementing all three methods can use the combined ‘serializable’ interface

• ‘serialize’ and ‘deserialize’ methods on classes must use ‘override’
• Required because all classes inherit from the RootClass, which can itself be serialized or deserialized

• Implementing ‘serialize’, ‘deserialize’, or an initializer prevents compiler-generation of all three
• Rationale: User has possibly diverged from default behavior, so do not generate incompatible implementations

56

CUSTOM TYPE SERIALIZATION

IMPLEMENTING (DE)SERIALIZERS

58

SERIALIZER API DESIGN

fileReader /
fileWriter

file

I/O Runtime

Serializer /
Deserializer

Entry API

Low-level I/O API

User-defined
serialize /
deserialize

method

User Type API

Format Agnostic API

‘read’/‘write’ call

The ‘serializeValue’ Method

• To develop a Serializer, users must first implement a ‘serializeValue’ method on a record
proc Serializer.serializeValue(writer: fileWriter, const val: ?) throws

• ‘serializeValue’ accepts either primitive types, or types with the ‘writeSerializable’ interface

• Once invoked, ‘serializeValue’ has complete control over serialization

• Users must also implement the format-agnostic API of the previous section

59

IMPLEMENTING SERIALIZERS

The ‘deserializeValue/Type’ Methods

• To develop a Deserializer, users must first implement ‘deserializeValue’ and ‘deserializeType’ methods
proc Deserializer.deserializeType(reader: fileReader,
 type readType) : readType throws

proc Deserializer.deserializeValue(reader: fileReader,
 ref val: ?readType) : void throws

• These methods accept types with either the ‘readDeserializable’ or ‘initDeserializable’ interface
• Or primitive types

• Once invoked, these methods have complete control over deserialization

• Users must also implement the format-agnostic API of the previous section

60

IMPLEMENTING DESERIALIZERS

STATUS AND NEXT STEPS

Status

• Serializers and Deserializers are available in Chapel 1.32, with several available formats
• In stable standard libraries: default, binary, JSON formats
• In unstable package modules: YAML, ChplFormat

• Support for reading and writing in JSON is significantly improved
• Due to format-agnostic (De)Serializer API

• Users may implement their own (De)Serializers that integrate cleanly with normal use of the ‘IO’ module

62

I/O SERIALIZERS

Next Steps

• Look for quality-of-life improvements
• For example, an optional ‘serializer’ argument to ‘writeln’, instead of using ‘withSerializer’ to create an alias

• Provide a more robust binary I/O format
• Current format is very simplistic
• Intended to replicate most of the legacy binary I/O behavior provided by ‘iokind’
• Could improve support for storing redundant class instances

• Explore support for other formats
• E.g., python’s “pickle”, or converting the TOML package module to use Serializers instead

63

I/O SERIALIZERS

OTHER IO STABILIZATION CHANGES

Background and This Effort

Background:
• The 'IO.FormattedIO' module provides C-like IO capabilities such as 'writef' and 'readf'

This Effort:
• Adjusted several format string options

– left, center, and right justification can be designated with '%<', '%^', and '%>' respectively, e.g.,
writef("|%<5i|%^5i|%>5i|", 1, 2, 3); // writes: "|1 | 2 | 3|"

– made real number formatters respect precision for integer arguments
writef("%.5r", 1); // writes: "1.00000"

– made integer formatters emit a warning for ignored precision arguments
writef("%.5i", 1); // writes: "1" (emits a runtime warning)

– replaced %t, %jt, and %ht with %? and serializers:
record r { var x: int; } stdout.writef("%?", new r(1)); // writes: "(x = 1)"
stdout.withSerializer(jsonSerializer).writef("%?", new r(2)); // writes: "{"x":2}"
stdout.withSerializer(chplSerializer).writef("%?", new r(3)); // writes: "new r(x = 3)"

65

FORMATTED IO IMPROVEMENTS

Impact

• Addresses inconsistency between '%-' for left justification and '%+' for printing a '+' with positive numbers
• Precision specifiers behave more consistently across types
• (De)Serializers can now control the behavior of the "any type" format specifier

• special formats like JSON are no longer built into the IO runtime

66

FORMATTED IO IMPROVEMENTS

This Effort:
• Updated 'readLiteral' and 'matchLiteral' to respect leading whitespace in the literal string

– the literal's leading whitespace must match for the literal to match, even for 'ignoreWhitespace=true', e.g.,
myFile.reader().matchLiteral(" asdf", ignoreWhitespace=true);

• Updated IO runtime to not buffer for sufficiently large read or write operations
• Generalized '[read|write]Binary' to support multi-dimensional arrays

Impact:
• 'readLiteral' and 'matchLiteral' no longer ignore leading whitespace characters in the literal string
• Avoiding buffering can improve performance for programs with large IO operations

– allowed undocumented 'QIO_CHANNEL_ALWAYS_UNBUFFERED' flag to be removed from some benchmarks

• Improved usability for bulk binary IO with arrays

67

GENERAL IO IMPROVEMENTS

This Effort:

Impact:
• Distinguishing 'fileReader's and 'fileWriter's via the type system is encouraged
• Queries on 'fileReader' and 'fileWriter' are replaced with new (de)serializer equivalents
• The interface for reading/writing string literals and newlines is now simplified

68

IO DEPRECATIONS

Deprecated Symbol Replacement

file[Reader|Writer].writing type check

file[Reader|Writer].binary check against (de)serializer type

file[Reader|Writer].kind using the binary (de)serializer with fileReader/fileWriter

ioLiteral 'fileReader.[read | match]Literal' and 'fileWriter.writeLiteral'

ioNewline 'fileReader.[read | match]Newline and 'fileWriter.writeNewline'

fileReader.readWriteLiteral 'fileWriter.writeLiteral'

fileWriter.readWriteLiteral 'fileReader.readLiteral'

fileReader.readWriteNewline 'fileReader.readNewline'

fileWriter.readWriteNewline 'fileWriter.writeNewline'

MATH/AUTOMATH MODULES

Background and Actions Taken/Decisions Made

Background:
• Provides mathematical constants and functions, e.g., 'e', 'sqrt()', 'gcd()'
• 'AutoMath' is included in all programs by default, 'Math' requires a 'use' or 'import' to access

Actions Taken/Decisions Made:
• Stopped including more symbols by default, e.g., 'e', 'pi', 'erf()', 'log()'
• Unified argument names to 'x' and 'y'

70

MATH/AUTOMATH MODULES

inline proc conjg(x: real(?w)) { … }
inline proc log2(x: int(?w)) { … }
proc log1p(x: real(64)): real(64) { … }
proc divceil(x: integral, y: integral) { … }

inline proc conjg(z: real(?w)) { … }
inline proc log2(val: int(?w)) { … }
proc log1p(x: real(64)): real(64) { … }
proc divceil(m: integral, n: integral) { … }

Before, for example: After:

Actions Taken/Decisions Made, and Next Steps

Actions Taken/Decisions Made (continued):
• Renamed many functions for clarity and to align with our standard module style guidelines

– e.g., renamed 'carg()' to 'phase()' and 'cproj()' to 'riemProj()'

• Marked several symbols as unstable for 2.0
– including 'nearbyint()' and 'erf()’

• Marked the ‘AutoMath’ module name as unstable, reflecting a vision of its contents being part of ‘Math’
– Enabled ‘AutoMath’ symbols to use 'Math.' for qualified access, e.g.
writeln(Math.cbrt(27)); // 'cbrt()' is available by default via the 'AutoMath' module but can use 'Math.' as a prefix

Next Steps:
• Stabilize remaining symbols
• Implement more extensive rounding support
• Fold the documentation for ‘AutoMath’ into the ‘Math’ module documentation itself

71

MATH/AUTOMATH MODULES

BIGINTEGER MODULE

Background and This Effort

Background: The ‘BigInteger’ module provides a Chapel-tastic multiple precision integer type, ‘bigint’
This Effort:

• Converted overwriting methods to free functions

• Unified procedure names to the Chapel style
– Consistent casing, e.g., ‘addmul()’ to ‘addMul()’
– Improved clarity, e.g., ‘divQ()’ to ‘div()’

• Unified argument names to a consistent naming scheme
– Most procedures take arguments named ‘x’ and ‘y’
– Some arguments denote special meaning, e.g., ‘result’, ‘n’, and ‘exp’

• Renamed ‘round’ enum to ‘roundingMode’

73

BIGINTEGER

var result, x, y: bigint;
x = 5: bigint;
y = 12: bigint;
add(result, x, y); // used to be ‘result.add(x, y)’

This Effort and Status

This Effort (continued):
• Added cast from ‘bool’

• Deprecated ‘get_str’ in favor of casting to a string

• Improved performance with remote-value-forwarding for ‘bigint’
• Marked infrequently used procedures we aren’t sure about as unstable (e.g., ‘legendre()’)
• Deprecated the transitional ‘config param bigintInitThrows’
• Removed previously deprecated symbols (e.g., ‘fits_*()’)
• Refreshed documentation and refactored code
• We considered renaming the module to ‘BigInt’ to match the type ‘bigint’, but did not go forward with it

Status: The ‘BigInteger’ module is now stable

74

BIGINTEGER

var x = true: bigint;

var myStr = new bigint(17): string;

COLLECTION TYPES

This Effort:
• Renamed some 'list' methods

– 'push' -> 'pushBack'
– 'pop' -> 'popBack' / 'getAndRemove'
– 'set' -> 'replace'

• Renamed 'map.addOrSet' to 'map.addOrReplace'
• Removed some limitations with 'map'

– indexing with a default-initializable value no longer throws
– 'map.values()' is available for maps with non-nilable owned values

• Marked 'parSafe' fields on 'list', 'map' and 'set' unstable
• Marked 'list.sort' unstable

Impact:
• 'list' and 'map' method names more clearly reflect their behavior
• Improved 'map's usability across a wider variety of types
• The unstable warning for 'parSafe' indicates intention to add separate parallel-safe types in the future

76

COLLECTION TYPES

ERRORS MODULE

Background:
• The 'Errors' module contains the base 'Error' class and other standard error types

This Effort:
• Renamed 'codepointSplittingError' to 'codepointSplitError'
• Deprecated the two-argument initializer for 'IllegalArgumentError'

Impact:
• Improved consistency in tense of error names
• Unified initializer signatures across error types

78

ERRORS MODULE

COLLECTIVES MODULE

This Effort:
• Deprecated non-reusable barriers and the initializer argument for requesting them

use Collectives;

// warning: non-reusable barriers are deprecated, please remove the 'reusable' argument from this initializer call
var b = new barrier(4, reusable=true);

• Deprecated and renamed the barrier check method
use Collectives;
var b = new barrier(4);
if b.check() then // warning: 'barrier.check()' is deprecated, please use '!barrier.pending()' instead
 …

if !b.pending() then // use this method instead
 …

80

COLLECTIVES MODULE

TIME MODULE

Background and This Effort

82

TIME MODULE

Background: The ‘Time’ module provides types for working with dates and times, and time measurement
• Previously reviewed, but not completely stabilized

This Effort: Final re-review of Time module for internal consistency and alignment with current standards
• Deprecated procedures with redundant functionality:

– ‘date’-forwarding ‘dateTime’ methods ‘isoCalendar’, ‘toOrdinal’, ‘weekday’, ‘isoWeekday’
– ‘getCurrentDate’, ‘getCurrentDayOfWeek’, ‘MINYEAR’/ ‘MAXYEAR’ in favor of ‘date’ type methods
– ‘date.createFromTimestamp’, in favor of ‘dateTime’ method
– ‘isoFormat’ methods, in favor of string cast or other formatting methods
– ‘dateTime.combine(date, time)’, in favor of corresponding ‘init’

• Pared down day-of-week enums to just one ‘dayOfWeek’ matching previous ‘isoDayOfWeek’
• Fixed asymmetrical behavior w.r.t. UTC and local versions of current-time methods, improved documentation
• Marked ‘Timezone’ and all procedures using it as unstable
• Renamed symbols inconsistent with our naming and casing conventions

This Effort, Impact, and Next Steps

This Effort (continued):
• Made several documentation improvements, including explicit return types on all procedures
• Renamed ‘isoCalendar’ to ‘isoWeekDate’
• Converted free function ‘abs(timeDelta)’ to method ‘timeDelta.abs()’

Impact:
• Improved module consistency and clarity of documentation
• Reduced ways to get the same information (net ~15 symbols deprecated)

Next Steps:
• Implement monotonic timers
• Make timezone awareness/naïveté part of ‘dateTime’ and ‘time’ static types
• Consider supporting timing via attributes or context managers, in addition to manual ‘stopwatch’ use
• Support ‘%f’ format specifier in ‘dateTime.strptime’

83

TIME MODULE

FILESYSTEM

Background:
• The 'FileSystem' module focuses on file and directory properties and operations
• 'umask' sets the file permissions that all new files will inherit
• We have not decided how 'umask' should behave on non-CPU locales (i.e., GPUs)

This Effort: Marked 'umask' as unstable on locale models other than 'flat'

Next Steps: Determine how 'umask' should behave in other locale models

85

FILESYSTEM

REFLECTION

Background: The 'Reflection' module offers support for reflecting about properties of Chapel code

This Effort:
• Deprecated 'fieldName' in favor of 'getFieldName'
• Marked several procedures unstable:

– 'isFieldBound': Check if a type's field is instantiated, consider using 'T.fieldName != ?' syntax instead
– 'canResolve...': Check to see if a call resolves
– 'getFieldRef': Get a mutable reference to an instance field

Next Steps: Add stable replacements for some unstable features
• Combining 'getField' with 'getFieldRef' may require changes to the language
• Add a 'canResolve' procedure to check if expressions resolve

87

REFLECTION

CTYPES MODULE

Background and This Effort

Background: ‘CTypes’ provides Chapel representations of C types, supporting interoperability procedures

This Effort: Improved ‘c_ptr’ and distilled functionality to focus on C interoperability
• Made ‘c_ptr’ and ‘c_ptrTo’ improvements — see 'c_ptr' improvements slides for more information

• Combined ‘c_malloc’/’c_calloc’/’c_aligned_alloc’/’c_free’ procedures into new ‘allocate’/’deallocate’ interface:
proc allocate(type eltType, size, clear = false, alignment = 0): c_ptr(eltType)
proc deallocate(data: c_ptr(void))

• Included unstable ‘strLen’ and ‘c_str’ functions to support ‘c_string’ replacement with ‘c_ptr’s
• See ‘c_string’ slides for more information

89

CTYPES MODULE

This Effort, Impact and Next Steps

This Effort (continued):
• Moved ‘c_mem{move,cpy,cmp,set}’ into ‘OS.POSIX’ without ‘c_’ prefixes, with consistent formal types
• Deprecated ‘c_nil’, ‘is_c_nil’, and ‘isAnyCPtr’
• Deprecated cast from class types to ‘c_ptr(void)’ in favor of ‘c_ptrTo’
• Made documentation improvements, including in “C Interoperability” technote

Impact:
• C pointers can be used with more types, and support more useful situations
• Module functionality is more specifically focused on C interoperability

Next Steps:
• Provide coherent external array interoperability between CTypes facilities and ‘chpl_external_array’ [#16135]

90

CTYPES MODULE

https://github.com/chapel-lang/chapel/issues/16135

CHPLCONFIG MODULE

Background: The ‘ChplConfig’ module provides compile-time Chapel configuration information
• Contains many ‘CHPL_*’ param strings: ‘CHPL_HOME’, ’CHPL_TARGET_COMPILER’, ’CHPL_COMM’, …

This Effort: Began moving away from ‘CHPL_*’ variables in favor of user-facing query procedures
• Added a ‘compiledForSingleLocale()’ query

– Motivated by frequent checks for whether ‘CHPL_COMM == none’
– Result determined by ‘--[no-]local’ flag if present, or ‘CHPL_COMM’ variable otherwise

• Marked all ‘CHPL_*’ variables unstable

Next Steps: Continue the transition towards nice user-facing queries for config information
• Add more useful queries for checking ‘CHPL_*’ variable information
• Remove ‘CHPL_*’ variables as they become unneeded

92

CHPLCONFIG MODULE

BITOPS

Background:
• The ‘BitOps’ module contains utilities for bit manipulation

This Effort:
• Renamed ‘popcount()’ to ‘popCount()’

Status:
• The ‘BitOps’ module is now stable

94

BITOPS MODULE

LIBRARY STABILIZATION:
NEXT STEPS

Next Steps

• Stabilize remaining unstable symbols in vetted modules
• e.g., 'BigInteger.gcd()', 'Reflection.canResolve()’

• Stabilize remaining standard modules
• e.g., CommDiagnostics, GMP, Help, GPU, Random, Heap

• Stabilize package modules and remaining distributions
• e.g., ZMQ, LinearAlgebra, ArgumentParser

• Use stabilization process when designing new features
• Features will still be prototypical, but should reduce the chance of subsequent renamings

96

CHAPEL 2.0 LIBRARY STABILIZATION

Next Steps

• Document '@deprecated' and '@unstable' attributes as user-facing features
• Developers can use them when making changes

• Implement parallel and distributed versions of Map, Set, and List using their stabilized interface

• Reduce uses of unstable features in release examples directory

97

CHAPEL 2.0 LIBRARY STABILIZATION

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.31 and 1.32 releases, refer
to the following sections in the CHANGES.md file:

• Namespace Changes

• Standard Library Modules

• Package Modules

• Standard Domain Maps (Layouts and Distributions)

• Changes/Feature Improvements in Libraries

• Name Changes in Libraries

• Name Changes in the 'Math' Library

• Name Changes in the 'BigInteger' Library

• Other Name Changes in Libraries

• Deprecated/Unstable/Removed 'IO' Library Features

• Deprecated/Unstable/Removed 'Math' Library Features

99

OTHER LIBRARY IMPROVEMENTS

• Deprecated/Unstable/Removed 'Time' Library Features

• Unstable Library Features

• Deprecated/Removed Library Features

• Deprecated/Unstable/Removed Library Features

• Performance Optimizations/Improvements

• Documentation Improvements for the 'IO' Library

• Documentation Improvements for the 'Math' Library

• Other Documentation Improvements

• Error Messages/Semantic Checks

• Bug Fixes for Libraries

• Developer-oriented changes: Module changes

https://github.com/chapel-lang/chapel/blob/release/1.32/CHANGES.md
https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

