
CHAPEL 1.31/1.32 RELEASE NOTES:
COMPILER / RUNTIME / PORTABILITY IMPROVEMENTS

Chapel Team
June 22, 2023 / September 28, 2023

OUTLINE

• Vectorization User Support
• Co-locale Improvements
• ARM Improvements
• Heterogeneous Processing Units
• Other Improvements

VECTORIZATION USER SUPPORT

Background and This Effort

Background:
• Many processors support parallelization with vector (SIMD) instructions

– Compilers can take advantage of this by vectorizing code, and this can improve performance

• It can be difficult to determine if Chapel code has been vectorized

This Effort:
• Added support for an experimental attribute to inspect vector code generation

4

VECTORIZATION USER SUPPORT

@llvm.assertVectorized // warns at compile-time if this loop was not vectorized
foreach i in A.domain do
 A[i] = sqrt(i:real(32));
...
foreach i in A.domain {
 @llvm.assertVectorized // warns at compile-time if this loop was not vectorized
 foreach j in A.domain do
 A[i] += sqrt(j:real(32));
}

This Effort, Status, and Next Steps

This Effort (continued):
• Added new flags ‘--llvm-remarks’ and ‘--llvm-remarks-function’ to inspect backend optimizations

• Added preliminary support for ‘@llvm.metadata’ to experiment with code generation

Status: The new features currently only work with the LLVM backend

Next Steps: Stabilize and expand loop attributes

5

VECTORIZATION USER SUPPORT

> chpl vector.chpl -–fast --llvm-remarks=vector –g
...
vector.chpl:6:0: opt passed for 'loop-vectorize' - vectorized loop
(vectorization width: 4, interleaved count: 2)
...
vector.chpl:14:0: opt missed for 'loop-vectorize' - the cost-model indicates
that vectorization is not beneficial
...

CO-LOCALE IMPROVEMENTS

Background and This Effort

Background:
• Co-locales are locales running on the same node without oversubscription
• Co-locale support was previously limited to Slurm/OFI
• Co-locales were opted into using the CHPL_RT_LOCALES_PER_NODE environment variable

– Currently limited to one locale per socket

This Effort:
• Extended support to Slurm and PBS launchers on GASNet
• Extended command-line arguments to support specifying co-locales

– Specifying ‘-nl NxL’ allocates N nodes with L locales each
> ./myChapelProgram –nl 4x2 # creates 8 locales on 4 nodes
> ./myChapelProgram –numLocales 4x2 # ditto

7

CO-LOCALE IMPROVEMENTS

Impact and Next Steps

Impact:
• Improved ease-of-use by being able to specify co-locales on the command-line
• Improved performance on multi-socket GASNet machines (e.g., dual-socket Xeon 8360Y)

Next Steps:
• Add co-locale support to remaining GASNet launchers
• Support one locale per NUMA domain

– Modern processors have multiple NUMA domains within a socket

• Explore having Chapel choose a “smart” default number of locales per node via ‘-nl 4x’

8

CO-LOCALE IMPROVEMENTS

Config Heap Stream Throughput

1 locale per node Fixed 182 GB/s/node

2 locales per node Fixed 297 GB/s/node

1 locale per node First-touch 304 GB/s/node

2 locales per node First-touch 303/GB/s/node

ARM IMPROVEMENTS

Background and This Effort

Background: In past releases, Chapel had performance issues on ARM systems
• Qthreads tasking layer lacked native context switching for 64-bit ARM, so task creation/switching was slow

– Especially slow on M1/M2 macs, leading us to use ‘fifo’ tasking there by default

This Effort: Upgraded to qthreads 1.19, which includes native 64-bit ARM context switching
• Collaborated with qthreads team to validate implementation
• Changed default tasking layer to qthreads on M1/M2 macs

10

ARM IMPROVEMENTS

Impact: ARM Linux

Impact: Improved qthreads task switching speed on ARM Linux
• Task switching microbenchmark

coforall 1..here.maxTaskPar*4 do
 for 1..500_000 do
 currentTask.yieldExecution();

11

ARM IMPROVEMENTS

Config w/o fast tasks w/ fast tasks improvement

56-core x86 Skylake 4.37s 0.32s 13.6x

64-core ARM ThunderX2 4.85s 0.44s 11.0x

64-core ARM Graviton3 2.67s 0.28s 9.5x

48-core ARM A64FX 11.79s 2.73s 4.3x

Impact: ARM Macs

Impact: Significantly improved qthreads task switching speed on ARM Macs
• Task switching microbenchmark

coforall 1..here.maxTaskPar*4 do
 for 1..500_000 do
 currentTask.yieldExecution();

12

ARM IMPROVEMENTS

Config qt w/o fast tasks fifo qt w/ fast tasks improvement

8P-core ARM M1 Pro 29.63s 8.85s 0.15s 197.5x / 59.0x

Impact: Yielding Communications

Impact: Better performance for applications with communication idioms that yield
• Especially those with multiple tasks per core (explicit with oversubscription or implicit from aggregation)

– e.g., Bale Indexgather on 16-node Cray XC with ARM ThunderX2

13

ARM IMPROVEMENTS

Approach w/out fast tasks with fast tasks improvement

ordered 70.7 MB/s/node 84.7 MB/s/node 1.20x

ordered, oversubscribed 86.3 MB/s/node 140.4 MB/s/node 1.63x

unordered 147.5 MB/s/node 152.3 MB/s/node 1.03x

aggregated 1352.0 MB/s/node 1448.5 MB/s/node 1.07x

HETEROGENEOUS PROCESSING UNITS

Background:
• Some processors have processing units (PUs) with different performance profiles

– e.g., Intel’s Alder Lake has 8 cores with 2 performance PUs, and 8 cores with 1 efficiency PU

• This triggered a bug in the runtime while computing the number of inaccessible cores

This Effort:
• Added support for specifying which kind of PU to use via the CHPL_RT_USE_PU_KIND environment variable

– Must be one of “performance”, “efficiency”, or “all”
– Default is “performance”

Impact:
• Allows the user to specify the kind of PUs used by their application

15

HETEROGENEOUS PROCESSING UNITS

OTHER IMPROVEMENTS

For a more complete list of compiler, runtime, and portability changes and improvements in the
1.31 and 1.32 releases, refer to the following sections in the CHANGES.md file:

• Platform-specific Performance Optimizations / Improvements

• Compilation-Time / Generated Code Improvements
• Generated Executable Flags
• Portability / Platform-specific Improvements

• Compiler Improvements
• Runtime Library Changes

• Launchers
• Developer-oriented changes: Compiler Flags
• Developer-oriented changes: Compiler improvements / changes

• Developer-oriented changes: Runtime improvements

17

OTHER IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.32/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

