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RECENT SCALABILITY HIGHLIGHTS



SCALABILITY HIGHLIGHTS BACKGROUND

e We had brief access to larger machines to evaluate performance at higher scales
e In May 2021 we had access to a 576 node HDR-100 InfiniBand machine
— Collected Arkouda argsort results
e In May 2023 we had access to an 8,192 node Slingshot-11 machine
— Collected Arkouda argsort and Bale indexgather results

e All Chapel results are with 1 process per node using a single NIC
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ARKOUDA SCALABILITY HIGHLIGHTS

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)

Arkouda Argsort Performance
o 576 compute nodes

- ) 1200 p------ -~ e o

» 72 TiB of 8-byte values Slingshot-11 April 2023, 32 GiB/node —e—

e ~480 GiB/s (~150 seconds) 1000 = HDR-100 IB May 2021, 128 GiB/node —»— -~ -~ - — >~ - - - - - -
HPE Cray EX (April 2023) &—® o B800 -

S~

« Slingshot-11 network (200 Gb/s) M G600 p--------"-mm T

o 896 compute nodes O 400 b---------em T T

o 28 TiB of 8-byte values 000 koo - .

e ~1200 GiB/s (~24 seconds) :

0]
128 256 512 896
Nodes

A notable performance achievement in ~100 lines of Chapel



ARKOUDA SCALABILITY HIGHLIGHTS

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)

Arkouda Argsort Performance
o 576 compute nodes
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A notable performance achievement in ~100 lines of Chapel
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INDEXGATHER SCALABILITY HIGHLIGHTS

e Exstack performance is ahead up to 64 nodes, but Chapel is ahead above that

« Exstack library and Conveyors implementation of indexgather only support a fixed number of PEs
— Conveyors can be adjusted to support more, but only determined that later
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INDEXGATHER SCALABILITY HIGHLIGHTS

e Chapel indexgather runs and scales up to 4K nodes
« Timed out gathering results, but uses same aggregators as Arkouda so expected to scale to 8K nodes as well
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SCALABILITY HIGHLIGHTS SUMMARY

e We are happy with these scalability results, but they are Arkouda/aggregation focused
« Aggregation only covers a relatively narrow set of network operations

» We wanted to take a step back and evaluate overall performance using our core benchmarks
» These cover a broader range of HPC idioms
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PERFORMANCE BACKGROUND

Platforms

 We want benchmark results to evaluate Chapel’s performance on InfiniBand and Slingshot networks
« As well as some reference MPI/SHMEM figures to get a sense of what the hardware is capable of

» We have only been optimizing for InfiniBand and Slingshot-11 since 2020

 Prior to that, we focused on performance for Cray XC systems with the Aries network
—Intent was to ensure Chapel had the right language features/semantics first, then optimize for other networks

e Hardware has changed dramatically between XC systems and modern InfiniBand/Slingshot systems
o Typical XC was dual socket with ~36 intel cores per node and a single NIC per node
— Penalty for getting NUMA affinity wrong was relatively low (1.5-2x)
e Modern systems we’ve run on are dual socket with 128+ AMD cores or 72+ Intel cores, often with multiple NICs

— Penalty for getting NUMA affinity wrong can be quite high (~10x)
—Hard to target multiple NICs from a single process/locale
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PERFORMANCE BACKGROUND

Co-locales

e Historically, Chapel ran with a process/locale per node, multithreading within a node
« This worked well on single-NIC systems with lower cross-socket NUMA penalties
« Especially when we could provide first-touch for large arrays on Aries systems

e Modern hardware performs best with a process per socket or even NUMA domain
« Due to high cost of getting NUMA affinity wrong and benefit of targeting multiple NICS from different processes

e Much of our recent work has been to support running Chapel with multiple processes/locales per node
o We refer to this as co-locales: co-located / cooperative locales running on the same node
« Initial work has focused on a process per socket, but have foundations to support more arbitrary mappings

e Results will include data for 1 and 2 locales per node (LPN)



PERFORMANCE BACKGROUND

System Configurations

» We wanted to collect core benchmark results on systems with similar per-node hardware
» Have easy access to single-NIC systems, so no multi-NIC results, but allows easier comparison between IB/SS

e Slingshot-11/InfiniBand hardware
e Dual-socket Milan (128-cores total)
o Single 200 Gbps NIC (HDR-200 and Slingshot-11)

e Historical Cray XC hardware
e Dual-socket Intel (36-cores total)
 Single Aries NIC
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PERFORMANCE BACKGROUND

Benchmark Description

e Core Benchmarks
» Stream: No communication, NUMA affinity sensitive
* ISx: Concurrent bulk communication over wide address range, NUMA affinity sensitive
* RA: Concurrent random fine-grained communication over wide address range
 Indexgather: Concurrent bulk communication between small address range
* Arkouda argsort
» Concurrent bulk communication between small address range, some NUMA affinity sensitivity

* Unless otherwise noted, results show weak scaling (fixed problem size per node)
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PERFORMANCE BACKGROUND

Reference Background

e Collecting reference numbers on HPE/Cray systems is straightforward
e cray-mpich and cray-openshmemx/cray-shmem are tuned and readily available

e SHMEM expects multiple NICs, might not be fully tuned for single
—Even so, still a useful comparison point to see if Chapel performance is way off

e \We hit challenges collecting InfiniBand reference numbers that we could feel confident in

e No vendor-supported MPI/SHMEM implementation on the particular system we ran on
—Tried MPICH, OpenMPI and MVAPICH2 for MPI; MVAPICH2 had best performance but still seemed low
—OpenMPI was the only available SHMEM implementation, but performance was quite poor

e Opted to not include reference numbers for InfiniBand at this time
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ARIES PERFORMANCE

Implementation Background

e We use ‘CHPL_COMM=ugni’ to target Aries

e Dynamically allocates large arrays from the OS and registers them at allocation time
—Enables first-touch for each array, provides good NUMA affinity and limits fragmentation
—Communication is fast since all memory is registered, able to achieve hardware bandwidth injection rates
e Each runtime thread has a communication endpoint
—Enables concurrent and uncontended injection, achieves hardware injection rates for small messages
e Has support for network atomics

e Uses a blocking active-message handler, avoids interference when there are no incoming AMs

e In general, our core benchmarks were competitive with or ahead of reference MPI/SHMEM codes
o Core benchmarks tested up to 256 nodes

e Previous scaling studies done up to 2048 nodes
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ARIES PERFORMANCE

Performance Results
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SLINGSHOT-11 PERFORMANCE

Implementation Background

e We use ‘CHPL_COMM-=ofi’ with the cxi provider to target Slingshot-11
e Uses a fixed and statically registered heap
—Memory is interleaved across the NUMA domains that a locale is running on
—Static registration makes RDMA trivial (all memory registered at program startup)
e Supports running a process per socket
—Limits interleaving to a single socket
—Does not currently support shared memory bypass for co-located locales
e Each runtime thread has a communication endpoint
—Enables concurrent and hopefully uncontended injection (fast concurrent fine-grained communication)
e Has support for network atomics

e Uses a polling active-message handler, can cause interference even when there are no incoming AMs
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SLINGSHOT-11 PERFORMANCE

Stream Results

» 1-locale-per-node performance is limited by the fixed heap being interleaved across sockets

» Expected locale-per-socket to achieve near peak performance (like we saw with gasnet-ibv on IceLake)

e However, additional NUMA behavior within AMD CPUs seems to limit performance
- Additionally, seeing even worse performance when using transparent huge pages (THP)
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SLINGSHOT-11 PERFORMANCE
Stream Next Steps

e Investigate performance differences from transparent huge pages
e Add support for dynamic heap/registration, enabling first-touch affinity
e Add support for running with a locale per NUMA domain

» Results in ideal NUMA affinity without requiring first-touch

e But increases number of AM handlers and number of peers
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SLINGSHOT-11 PERFORMANCE

ISx Results

e |Sx performance is fairly competitive, slightly behind under 32 nodes
« Believe communication patterns are optimized, likely cause is imperfect NUMA affinity
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SLINGSHOT-11 PERFORMANCE

Fine-grained Indexgather Results

e Fine-grained indexgather performance is behind SHMEM
e Root cause unknown, need to investigate
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SLINGSHOT-11 PERFORMANCE
Aggregated Indexgather Results

e Aggregated indexgather performance is generally ahead of SHMEM
o Chapel implementation is more asynchronous, and task-based runtime enables trivial comm/compute overlap
« Additionally, Chapel using a process per node/socket reduces number of peers, enabling fewer and larger buffers
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SLINGSHOT-11 PERFORMANCE
Thread Scaling Results

e GETs have good thread scaling, but PUTs have poor scaling when using FI_INJECT

 Likely caused by some resource exhaustion; debug messages show running out of resources for FI_INJECT
- Running without inject we see better scaling, but low per-core rate
e Have some leads, but root cause is not fully understood
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INFINIBAND PERFORMANCE

Implementation Background

e We use ‘CHPL_COMM=gasnet’ with the ibv conduit to target InfiniBand

e Two production mechanisms for registering memory

—Segment fast (like SS-11): fixed heap, all memory is registered at program startup
Memory is interleaved
Static registration enables fast communication

—Segment large (default): fixed heap, but memory is registered at communication time in 128K chunks
Global first-touch (fixed heap results in memory reuse)
Dynamic registration in small chunks can limit communication performance

e Supports running a process per socket
—We currently disable GASNet shared memory bypass for co-located locales (would prevent blocking AM handler)
e Runtime threads share a single communication endpoint
—Serializes communication injection, hurts fine-grained communication
e Not currently utilizing the GASNet-EX remote atomic API
—And GASNet does not currently offload atomics on InfiniBand anyway
e Uses a blocking active-message handler, avoids interference when there are no incoming AMs

— |
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INFINIBAND PERFORMANCE

Stream Results

e Dynamic registration can achieve peak stream performance
 Static registration suffers from the same NUMA penalties as SS-11 (including THP issues)
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INFINIBAND PERFORMANCE

ISx Results

e |Sx performance suffers with dynamic registration

« Registration at comm time and 128K chunking limits bandwidth over a wide address range
e Performance with static registration is much better

» Locale per socket improves affinity and increases communication concurrency
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INFINIBAND PERFORMANCE

Indexgather Results

e Indexgather is largely unimpacted by registration type

« Lots of communication, but between same addresses so dynamic registration overhead is amortized
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INFINIBAND PERFORMANCE
Thread Scaling Results

e GETs and PUTs have poor thread scaling
e Due to injection serialization
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SLINGSHOT VS INFINIBAND

Stream Results

e GASNet dynamic registration matches reference
 Static registration suffers from suboptimal NUMA affinity
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SLINGSHOT VS INFINIBAND

ISx Results

e ISx performance is similar on InfiniBand and Slingshot-11 up to 16 nodes

« InfiniBand falling off above that, need to investigate root cause
—Reminder that InfiniBand dynamic registration (not shown) had substantially worse performance
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SLINGSHOT VS INFINIBAND

Indexgather Results

» Indexgather performance is similar on InfiniBand and Slingshot-11
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SLINGSHOT VS INFINIBAND
Random Access (RMOQO) Results

e Injection serialization limits fine-grained performance for gasnet-ibv
o Dynamic registration further limits performance for operations over a wide address range
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SLINGSHOT VS INFINIBAND

Random Access (atomics) Results

e Injection serialization and lack of offloaded atomics hurts gasnet-ibv performance
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SLINGSHOT VS INFINIBAND
Thread Scaling Results

e Serial and up to 4 thread GET rates are similar on InfiniBand and Slingshot-11
e Only higher InfiniBand thread counts start to fall off from serialization
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SLINGSHOT VS INFINIBAND
Arkouda Results

e For larger problem sizes, Arkouda performance is similar on InfiniBand and Slingshot-11

Arkouda Argsort Performance
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SLINGSHOT VS INFINIBAND
Arkouda Strong Scaling Results

e For smaller problem sizes (or strong scaling) gasnet-ibv performance falls off
« Smaller transfers start seeing overhead of injection serialization
« Fewer fransfers inhibits amortization of dynamic registration cost
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NEXT STEPS

Benchmarks

e Automate performance scaling runs using new ‘chplExperiment’ framework
e Publish scripts so users can run on their systems too

e Run additional core benchmarks and gather more reference numbers
 Collect Chapel and reference results for PRK Stencil and NAS FT
 Collect reference results for Random Access

e Collect reference numbers on InfiniBand
e Requires figuring out installs or running on a machine with vendor tuned implementations

e Run core benchmarks at higher scales

e Run core benchmarks on multi-NIC systems

e Run additional user applications like CHAMPS

e Port additional benchmarks like Bale, PRKs
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NEXT STEPS
Slingshot-11

e |nvestigate and improve stream performance on transparent huge pages

e Resolve fine-grained performance thread scaling issues

e Add allocation-time dynamic registration and explore ODP

e Evaluate and tune multi-NIC performance

e Expand co-locale support to allow an arbitrary number of locales per node
e And add support for shared memory bypass

e Explore possibility of using a blocking active message handler
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NEXT STEPS
InfiniBand

e Complete and merge code co-developed with GASNet team to upgrade to GASNet-EX API
e Minimal transliteration of existing GASNet code—does not make use of new features

e Use GASNet-EX remote atomics (ideally with more offload support from GASNet)
e Improve thread scaling by using GASNet-EX multi-endpoint API (also requires GASNet work)
e Evaluate performance of UCX conduit

e [mprove registration story, preferably 1 good default instead of being application-dependent
* |deally want either allocation time dynamic registration (with a new GASNet API to register) or ODP
—But ODP (on demand paging) requires good hardware/firmware support, which we’re not confident about
e Expand co-locale support to allow an arbitrary number of locales per node

* And enable GASNet’s existing support for shared memory bypass
—Either requires polling active-message handler or collaboration with GASNet team to only bypass GETs/PUTs
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