Hewlett Packard
Enterprise

CHAPEL 1.31/1.32 RELEASE NOTES:
$S-11 / IB PERFORMANCE STATUS

Chapel Team
June 22, 2023 / September 28, 2023



OUTLINE

e Recent Scalability Highlights

» Performance Background

e Aries Performance

e Slingshot-11 Performance

e InfiniBand Performance

e Slingshot vs InfiniBand
ext Steps

<D




RECENT SCALABILITY HIGHLIGHTS



SCALABILITY HIGHLIGHTS BACKGROUND

e We had brief access to larger machines to evaluate performance at higher scales
e In May 2021 we had access to a 576 node HDR-100 InfiniBand machine
— Collected Arkouda argsort results
e In May 2023 we had access to an 8,192 node Slingshot-11 machine
— Collected Arkouda argsort and Bale indexgather results

e All Chapel results are with 1 process per node using a single NIC



ARKOUDA SCALABILITY HIGHLIGHTS

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)
o 576 compute nodes

e 72 TiB of 8—byTe values igg
e ~480 GiB/s (~150 seconds) 400

350
300
250
200
150
100

50

GiB/s

Arkouda Argsort Performance

- HDR-100 IB May 2021, 128 GiB/node —— - - - - - - - - - - -
128 256 512 576
Nodes

A notable performance achievement in ~100 lines of Chapel



ARKOUDA SCALABILITY HIGHLIGHTS

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)

Arkouda Argsort Performance
o 576 compute nodes

- ) 1200 p------ -~ e o

» 72 TiB of 8-byte values Slingshot-11 April 2023, 32 GiB/node —e—

e ~480 GiB/s (~150 seconds) 1000 = HDR-100 IB May 2021, 128 GiB/node —»— -~ -~ - — >~ - - - - - -
HPE Cray EX (April 2023) &—® o B800 -

S~

« Slingshot-11 network (200 Gb/s) M G600 p--------"-mm T

o 896 compute nodes O 400 b---------em T T

o 28 TiB of 8-byte values 000 koo - .

e ~1200 GiB/s (~24 seconds) :

0]
128 256 512 896
Nodes

A notable performance achievement in ~100 lines of Chapel



ARKOUDA SCALABILITY HIGHLIGHTS

HPE Apollo (May 2021) X
e HDR-100 Infiniband network (100 Gb/s)

Arkouda Argsort Performance
o 576 compute nodes

* 72 TiB of 8-byte values 2888 - Slingshot-11 May 2023, 32 GiB/node —s— — — — — — ———  — __
o ~480 GiB/s (~150 seconds) Slingshot-11 April 2023, 32 GiB/node —e—
/7000 |~ HDR-100 IB May 2021, 128 GiB/node —— ~~ ="~~~ "~~~

HPE Cray EX (April 2023) ®—® = 6000 [------------rrmmmmmmm oo e

+ Slingshot-11 network (200 Gb/s) 0 2888 A

o 896 compute nodes O 3000 b------- T

« 28 TiB of 8-byte values 2000 F-----—~- -

« ~1200 GiB/s (~24 seconds) 1000 - """ """ e :
HPE Cray EX (May 2023) &———§ v 1024 2048 4096 8192

o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes

o 256 TiB of 8-byte values

« ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

— | 7



INDEXGATHER SCALABILITY HIGHLIGHTS

e Exstack performance is ahead up to 64 nodes, but Chapel is ahead above that

« Exstack library and Conveyors implementation of indexgather only support a fixed number of PEs
— Conveyors can be adjusted to support more, but only determined that later

Bale Indexgather Performance Bale Indexgather Performance
HPE Cray EX (Slingshot-11) HPE Cray EX (Slingshot-11)

700 -~ A500 ----- """~ mmmmmm e m e
Chapel — =. Chapel —
600 = SHMEM Exstack —— - - - - - - - -~ --------------—_ 4000 SHIVFI)EM Exstack ——
SHMEM Convey - -% - 3500 = SHMEM Convey - -% -

500 [ 8000 [ -m o T
S e = 20800 - e e mnn e T
o O e * @ 2000 oo
300 |- oo T T T 1500 |-------- oo
____________________________________ 1000 |-
200 Tl 500 baro
100 == ' : 0
16 32 64 64 128 256 512



INDEXGATHER SCALABILITY HIGHLIGHTS

e Chapel indexgather runs and scales up to 4K nodes
« Timed out gathering results, but uses same aggregators as Arkouda so expected to scale to 8K nodes as well

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

5000 gr-------"--""-""-"="-""~/“; ;e memeoo--
glr-]lal\ﬁ)lgll\/l Exstack —¢—

20000 SHMEM Convey =-=%- _—

@ 15000 |- m e T
(2l

G 10000 - T

5000 “““ ; ———————————————————————————————————

O - ] ] [ 1

512 1024 2048 4096



SCALABILITY HIGHLIGHTS SUMMARY

e We are happy with these scalability results, but they are Arkouda/aggregation focused
« Aggregation only covers a relatively narrow set of network operations

» We wanted to take a step back and evaluate overall performance using our core benchmarks
» These cover a broader range of HPC idioms

10



PERFORMANCE BACKGROUND



PERFORMANCE BACKGROUND

Platforms

 We want benchmark results to evaluate Chapel’s performance on InfiniBand and Slingshot networks
« As well as some reference MPI/SHMEM figures to get a sense of what the hardware is capable of

» We have only been optimizing for InfiniBand and Slingshot-11 since 2020

 Prior to that, we focused on performance for Cray XC systems with the Aries network
—Intent was to ensure Chapel had the right language features/semantics first, then optimize for other networks

e Hardware has changed dramatically between XC systems and modern InfiniBand/Slingshot systems
o Typical XC was dual socket with ~36 intel cores per node and a single NIC per node
— Penalty for getting NUMA affinity wrong was relatively low (1.5-2x)
e Modern systems we’ve run on are dual socket with 128+ AMD cores or 72+ Intel cores, often with multiple NICs

— Penalty for getting NUMA affinity wrong can be quite high (~10x)
—Hard to target multiple NICs from a single process/locale

: | 12



PERFORMANCE BACKGROUND

Co-locales

e Historically, Chapel ran with a process/locale per node, multithreading within a node
« This worked well on single-NIC systems with lower cross-socket NUMA penalties
« Especially when we could provide first-touch for large arrays on Aries systems

e Modern hardware performs best with a process per socket or even NUMA domain
« Due to high cost of getting NUMA affinity wrong and benefit of targeting multiple NICS from different processes

e Much of our recent work has been to support running Chapel with multiple processes/locales per node
o We refer to this as co-locales: co-located / cooperative locales running on the same node
« Initial work has focused on a process per socket, but have foundations to support more arbitrary mappings

e Results will include data for 1 and 2 locales per node (LPN)



PERFORMANCE BACKGROUND

System Configurations

» We wanted to collect core benchmark results on systems with similar per-node hardware
» Have easy access to single-NIC systems, so no multi-NIC results, but allows easier comparison between IB/SS

e Slingshot-11/InfiniBand hardware
e Dual-socket Milan (128-cores total)
o Single 200 Gbps NIC (HDR-200 and Slingshot-11)

e Historical Cray XC hardware
e Dual-socket Intel (36-cores total)
 Single Aries NIC

14



PERFORMANCE BACKGROUND

Benchmark Description

e Core Benchmarks
» Stream: No communication, NUMA affinity sensitive
* ISx: Concurrent bulk communication over wide address range, NUMA affinity sensitive
* RA: Concurrent random fine-grained communication over wide address range
 Indexgather: Concurrent bulk communication between small address range
* Arkouda argsort
» Concurrent bulk communication between small address range, some NUMA affinity sensitivity

* Unless otherwise noted, results show weak scaling (fixed problem size per node)

15



PERFORMANCE BACKGROUND

Reference Background

e Collecting reference numbers on HPE/Cray systems is straightforward
e cray-mpich and cray-openshmemx/cray-shmem are tuned and readily available

e SHMEM expects multiple NICs, might not be fully tuned for single
—Even so, still a useful comparison point to see if Chapel performance is way off

e \We hit challenges collecting InfiniBand reference numbers that we could feel confident in

e No vendor-supported MPI/SHMEM implementation on the particular system we ran on
—Tried MPICH, OpenMPI and MVAPICH2 for MPI; MVAPICH2 had best performance but still seemed low
—OpenMPI was the only available SHMEM implementation, but performance was quite poor

e Opted to not include reference numbers for InfiniBand at this time

16



ARIES PERFORMANCE



ARIES PERFORMANCE

Implementation Background

e We use ‘CHPL_COMM=ugni’ to target Aries

e Dynamically allocates large arrays from the OS and registers them at allocation time
—Enables first-touch for each array, provides good NUMA affinity and limits fragmentation
—Communication is fast since all memory is registered, able to achieve hardware bandwidth injection rates
e Each runtime thread has a communication endpoint
—Enables concurrent and uncontended injection, achieves hardware injection rates for small messages
e Has support for network atomics

e Uses a blocking active-message handler, avoids interference when there are no incoming AMs

e In general, our core benchmarks were competitive with or ahead of reference MPI/SHMEM codes
o Core benchmarks tested up to 256 nodes

e Previous scaling studies done up to 2048 nodes

18



ARIES PERFORMANCE

Performance Results

STREAM Performance (GB/s)

30000

25000

20000
Y

m 15000
O]

10000

5000

0 (] (] (] (]
16 32 64 128 256
Locales (x 36 cores / locale)
ISx Time (seconds)

o
(O]
L
(0]
1=
|_

16 32 64 128 256
Locales (x 36 cores / locale)

GUPS

GB/s

600
500
400
300
200
100

RA Performance (GUPS)

16 32 64 128 256
Locales (x 36 cores / locale)

Bale Indexgather Performance

Chapel ——
= SHMEM Exstack—%— - - - - - - - - - - - - - - - - - - ==
SHMEM Convey- % -
777777777777777777777777777777777777777 - x
)
16 64 128 256

Locales (x 36 cores / locale)

19



SLINGSHOT-11 PERFORMANCE



SLINGSHOT-11 PERFORMANCE

Implementation Background

e We use ‘CHPL_COMM-=ofi’ with the cxi provider to target Slingshot-11
e Uses a fixed and statically registered heap
—Memory is interleaved across the NUMA domains that a locale is running on
—Static registration makes RDMA trivial (all memory registered at program startup)
e Supports running a process per socket
—Limits interleaving to a single socket
—Does not currently support shared memory bypass for co-located locales
e Each runtime thread has a communication endpoint
—Enables concurrent and hopefully uncontended injection (fast concurrent fine-grained communication)
e Has support for network atomics

e Uses a polling active-message handler, can cause interference even when there are no incoming AMs

21



SLINGSHOT-11 PERFORMANCE

Stream Results

» 1-locale-per-node performance is limited by the fixed heap being interleaved across sockets

» Expected locale-per-socket to achieve near peak performance (like we saw with gasnet-ibv on IceLake)

e However, additional NUMA behavior within AMD CPUs seems to limit performance
- Additionally, seeing even worse performance when using transparent huge pages (THP)

GB/s

16000
14000
12000
10000
8000
6000
4000
2000

Stream Performance
192 GiB/node

. MP1+OpenMP —— _ _ _ _ _ _ _ __ ________—"_
Chapel 2 LPN (no THP) ----®----
= Chapel 2 LPN it

_ Chapel 1LPN —

.e”
.e”
.e

L
oec”
- - — — - - - - - - - - - = S e e e -

.ec”
e

4 8 16 32 64
Nodes (128 cores / node)

22



SLINGSHOT-11 PERFORMANCE
Stream Next Steps

e Investigate performance differences from transparent huge pages
e Add support for dynamic heap/registration, enabling first-touch affinity
e Add support for running with a locale per NUMA domain

» Results in ideal NUMA affinity without requiring first-touch

e But increases number of AM handlers and number of peers

23



SLINGSHOT-11 PERFORMANCE

ISx Results

e |Sx performance is fairly competitive, slightly behind under 32 nodes
« Believe communication patterns are optimized, likely cause is imperfect NUMA affinity

ISx Time
64 GiB/node

Chapel 1 LPN ——
5 = Chapel 2LPN === - - - - - - - - -~ o
SHMEM ——

Time (sec)
w

Nodes (128 cores / node)

24



SLINGSHOT-11 PERFORMANCE

Fine-grained Indexgather Results

e Fine-grained indexgather performance is behind SHMEM
e Root cause unknown, need to investigate

Bale Indexgather Performance
2 GiB/node, 2**28 requests/node

AGP ——
= Chapel 2LPN - =& -~~~ ~~ """ "o oo T
Chapel 1 LPN —o—

= -
ad
=

GB/s

= -
= -
=

Nodes (128 cores / node)

25



SLINGSHOT-11 PERFORMANCE
Aggregated Indexgather Results

e Aggregated indexgather performance is generally ahead of SHMEM
o Chapel implementation is more asynchronous, and task-based runtime enables trivial comm/compute overlap
« Additionally, Chapel using a process per node/socket reduces number of peers, enabling fewer and larger buffers

Bale Indexgather Performance
32 GiB/node, 2**32 requests/node

700 [ m e
B0 [ Grapel 1 LPN e =~~~ T
500 | Gomey ~ me- et

L 400 et

G 300 [t e et
200 |- emsil
100 - geamma® s

0

Nodes (128 cores / node)



SLINGSHOT-11 PERFORMANCE
Thread Scaling Results

e GETs have good thread scaling, but PUTs have poor scaling when using FI_INJECT

 Likely caused by some resource exhaustion; debug messages show running out of resources for FI_INJECT
- Running without inject we see better scaling, but low per-core rate
e Have some leads, but root cause is not fully understood

Synthetic GET Scaling Synthetic PUT Scaling
500,000 ops/thread 500,000 ops/thread

PUT ——
_ No Inject PUT —e—

Threads Threads



INFINIBAND PERFORMANCE



INFINIBAND PERFORMANCE

Implementation Background

e We use ‘CHPL_COMM=gasnet’ with the ibv conduit to target InfiniBand

e Two production mechanisms for registering memory

—Segment fast (like SS-11): fixed heap, all memory is registered at program startup
Memory is interleaved
Static registration enables fast communication

—Segment large (default): fixed heap, but memory is registered at communication time in 128K chunks
Global first-touch (fixed heap results in memory reuse)
Dynamic registration in small chunks can limit communication performance

e Supports running a process per socket
—We currently disable GASNet shared memory bypass for co-located locales (would prevent blocking AM handler)
e Runtime threads share a single communication endpoint
—Serializes communication injection, hurts fine-grained communication
e Not currently utilizing the GASNet-EX remote atomic API
—And GASNet does not currently offload atomics on InfiniBand anyway
e Uses a blocking active-message handler, avoids interference when there are no incoming AMs

— |

29



INFINIBAND PERFORMANCE

Stream Results

e Dynamic registration can achieve peak stream performance
 Static registration suffers from the same NUMA penalties as SS-11 (including THP issues)

Stream Performance
192 GiB/node

16000 [---------=- -

. Dynamic Reg1 LPN —%— _ _ _ ____________________~—
14000 Dynamic Reg 2 LPN - -=- -
12000 p= StaticReg2LPN === - - - - - - -~ - - - - - - - - 7 -~ - - _ o
Static Reg 1 LPN —e—

@ 10000 | SEEROTENTIE T eI
0 8000 [~ g oaee Rt T
© 6000 - Tre T
4000 |-
2000 |- gmEE T e

4 8 16 32 64
Nodes (128 cores / node)



INFINIBAND PERFORMANCE

ISx Results

e |Sx performance suffers with dynamic registration

« Registration at comm time and 128K chunking limits bandwidth over a wide address range
e Performance with static registration is much better

» Locale per socket improves affinity and increases communication concurrency

ISx Time
64 GiB/node

(I e

Dynamic Reg 1 LPN —=—
60 - Dynamic Reg2LPN - - - """~~~ ""~"~~~""""°" """ =" """ """
Static Reg 1 LPN ——
50 = static Reg2LPN - - """~~~ "~"~"~>""~-~""~"°-°"°-°~-°-°-°-°-~-~_

et =—--
- - -
- -
- - -

40 |- A eI
30 |-z

- -
- -
-

20 T
10 - me—T T

Time (sec)

4 8 16 32 64
Nodes (128 cores / node)



INFINIBAND PERFORMANCE

Indexgather Results

e Indexgather is largely unimpacted by registration type

« Lots of communication, but between same addresses so dynamic registration overhead is amortized

GB/s

700
600 | Static Redd PN —
500 | Dynamc Re9 2 LPN —e
400
300 p-----------
200 |-------~:
100

0

Bale Indexgather Performance

32 GiB/node, 2**32 requests/node

— e e e e — A _ BT o o e e e e e - — =

_______________________

L — T — — - — = = - — - — = —

Nodes (128 cores / node)

32



INFINIBAND PERFORMANCE
Thread Scaling Results

e GETs and PUTs have poor thread scaling
e Due to injection serialization

Synthetic GET Scaling Synthetic PUT Scaling
500,000 ops/thread 500,000 ops/thread

Mops/s

Olll | | | Olll | | |

48 16 32 64 128 48 16 32 64 128
Threads Threads




SLINGSHOT VS INFINIBAND



SLINGSHOT VS INFINIBAND

Stream Results

e GASNet dynamic registration matches reference
 Static registration suffers from suboptimal NUMA affinity

Stream Performance
192 GiB/node

16000 [------- === s

. MPI+OpenMP —»— _ _ _ _ _ _ _ _ _ _ _ _ ______-~__
14000 Chapel IB Dyn 2 LPN - -= -
12000 8hapel IBStat2LPN === - - - - - - - - - - — = - - - - - -~ 3
hapel SS-11 2 LPN - -+ -

10000 |

8000 [~~~ e jaemt oo
6000 -

4000 [~~~ - et
]

_— o — - — —_—— e - — — m = Z

GB/s

4 8 16 32 64
Nodes (128 cores / node)

35



SLINGSHOT VS INFINIBAND

ISx Results

e ISx performance is similar on InfiniBand and Slingshot-11 up to 16 nodes

« InfiniBand falling off above that, need to investigate root cause
—Reminder that InfiniBand dynamic registration (not shown) had substantially worse performance

ISx Time
64 GiB/node
B [
Chapel IB Stat 2 LPN - -e- - .-
/ | ChapelSS-11 2LPN - ===~~~ "~~~ -~~~ -~~~ ~-~ SIsmT o
SHMEM —— .-
’8‘ oep--—-""-"""""""""""""-"-"-"------ ST
\U_)/ 5 ————————————————————— ; :;:':: ———————————————————
© g b e . S
g 4 4——:::12_:: ______ T T = = - m mm —mm—m = === - - - .
= == s T T T T T T T T TTTTITITT
. L1 L L )
4 8 16 32 64

Nodes (128 cores / node)

36



SLINGSHOT VS INFINIBAND

Indexgather Results

» Indexgather performance is similar on InfiniBand and Slingshot-11

700
600
500
400
300
200
100

GB/s

Bale Indexgather Performance
32 GiB/node, 2**32 requests/node

Chapel SS-11 2 LPN - - - _.-
~ Chapel IBStat2PN --e-- "~~~ """ """~ """ """ o=t
Chapel IBDyn 2 LPN - -=- - .= -7
~ SHMEM Exstack —— ~~~ =~~~ "~ "] 2T T T T,

Nodes (128 cores / node)

37



SLINGSHOT VS INFINIBAND
Random Access (RMOQO) Results

e Injection serialization limits fine-grained performance for gasnet-ibv
o Dynamic registration further limits performance for operations over a wide address range

RA-rmo Performance

32 GiB/node
0
SS11 2 LPN (2721 ops
COPT EmamEns
yn **21 ops
5:1)) 0.0006 f----=-----"-=-"--------o---o--ns
(5 00004 -________““‘———-:. .... Tt it
O
O l-‘r‘ s A S WS S S S E R L L = ]
4 8 16 32 64

Nodes (128 cores / node)



SLINGSHOT VS INFINIBAND

Random Access (atomics) Results

e Injection serialization and lack of offloaded atomics hurts gasnet-ibv performance

GUPS

0.001
0.0008
0.0006
0.0004
0.0002

RA-atomics Performance
32 GiB/node

SS-11 2 LPN (227 ops
.. SS-11 2LPN (2**21 ops
IB Stat 2 LPN (2**21 ops
IB Dyn 2 LPN (2**21 ops

- - - - = = e e e = e e e e e e e e e e e e A e - - e e e === == = = - -

A~~~
~————
|
|
|

"""
- - - - - = = - - = et e m e - - e e e e e e e e e e e - e e m - - - - = -

4 8 16 32
Nodes (128 cores / node)

39



SLINGSHOT VS INFINIBAND
Thread Scaling Results

e Serial and up to 4 thread GET rates are similar on InfiniBand and Slingshot-11
e Only higher InfiniBand thread counts start to fall off from serialization

Synthetic GET Scaling Synthetic GET Scaling
500,000 ops/thread 500,000 ops/thread

35 F S5 35 F Son _

IB Stat —eo—

Mops/s

'

48 16 32 64 128
Threads Threads

— | 4



SLINGSHOT VS INFINIBAND
Arkouda Results

e For larger problem sizes, Arkouda performance is similar on InfiniBand and Slingshot-11

Arkouda Argsort Performance

16 GiB/node
100 ===
90 = SS-11 2LPN ==& - - - - - - - - - - - - oo e
80 IBStat2LLPN ==~ - e
IBDyn2LPN - - - PR L -7a
70 -__________________________::;"____:_—__’_'__— _____
@ B0 e
|m 50p--""-""-""-""-"-"---------- P i e
(5 40 —————————————— :,::’;:‘E.— ——————————————————————
30 ----------‘;3" ------------------------------
L
10 aee? -
O'I ] ] ] ]
4 8 16 32 64

Nodes (128 cores / node)

41



SLINGSHOT VS INFINIBAND
Arkouda Strong Scaling Results

e For smaller problem sizes (or strong scaling) gasnet-ibv performance falls off
« Smaller transfers start seeing overhead of injection serialization
« Fewer fransfers inhibits amortization of dynamic registration cost

GiB/s

Arkouda Argsort Performance

16 GiB
40 [y,
. SS-11 2PN --~- _ - __
35 IB Stat 2 LPN - -o - Soec
30 IBDyn2LPN = - - _ _ _ _ _ _ _ _ _ _______ ez o ___
25 -——————————————————————::‘:: —————————————————————— ®
"’ ———————
20 b--cmm e e T
15 p--------- ‘__:¢4=_——_:__‘ =:____Z::=_‘::: ____________
/’,"—’ -‘-_
-_____’.t’;:’_f._—___________________________ ________ - -
R :
5 -‘,—2 —————————————————————————————————————————
Ofl | | | ]
4 8 16 32 64

Nodes (128 cores / node)

42



NEXT STEPS



NEXT STEPS

Benchmarks

e Automate performance scaling runs using new ‘chplExperiment’ framework
e Publish scripts so users can run on their systems too

e Run additional core benchmarks and gather more reference numbers
 Collect Chapel and reference results for PRK Stencil and NAS FT
 Collect reference results for Random Access

e Collect reference numbers on InfiniBand
e Requires figuring out installs or running on a machine with vendor tuned implementations

e Run core benchmarks at higher scales

e Run core benchmarks on multi-NIC systems

e Run additional user applications like CHAMPS

e Port additional benchmarks like Bale, PRKs

VA



NEXT STEPS
Slingshot-11

e |nvestigate and improve stream performance on transparent huge pages

e Resolve fine-grained performance thread scaling issues

e Add allocation-time dynamic registration and explore ODP

e Evaluate and tune multi-NIC performance

e Expand co-locale support to allow an arbitrary number of locales per node
e And add support for shared memory bypass

e Explore possibility of using a blocking active message handler

45



NEXT STEPS
InfiniBand

e Complete and merge code co-developed with GASNet team to upgrade to GASNet-EX API
e Minimal transliteration of existing GASNet code—does not make use of new features

e Use GASNet-EX remote atomics (ideally with more offload support from GASNet)
e Improve thread scaling by using GASNet-EX multi-endpoint API (also requires GASNet work)
e Evaluate performance of UCX conduit

e [mprove registration story, preferably 1 good default instead of being application-dependent
* |deally want either allocation time dynamic registration (with a new GASNet API to register) or ODP
—But ODP (on demand paging) requires good hardware/firmware support, which we’re not confident about
e Expand co-locale support to allow an arbitrary number of locales per node

* And enable GASNet’s existing support for shared memory bypass
—Either requires polling active-message handler or collaboration with GASNet team to only bypass GETs/PUTs

46



THANK YOU *‘

https://chapel-lang.org
@ChapelLanguage




