
CHAPEL 1.31/1.32 RELEASE NOTES:
SS-11 / IB PERFORMANCE STATUS

Chapel Team
June 22, 2023 / September 28, 2023

OUTLINE

• Recent Scalability Highlights
• Performance Background
• Aries Performance
• Slingshot-11 Performance
• InfiniBand Performance
• Slingshot vs InfiniBand
• Next Steps

RECENT SCALABILITY HIGHLIGHTS

• We had brief access to larger machines to evaluate performance at higher scales
• In May 2021 we had access to a 576 node HDR-100 InfiniBand machine

– Collected Arkouda argsort results

• In May 2023 we had access to an 8,192 node Slingshot-11 machine
– Collected Arkouda argsort and Bale indexgather results

• All Chapel results are with 1 process per node using a single NIC

SCALABILITY HIGHLIGHTS BACKGROUND

4

ARKOUDA SCALABILITY HIGHLIGHTS

0
50
100
150
200
250
300
350
400
450
500

128 256 512 576
G
iB
/s

Nodes

HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

5

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Sling114,688shot-11 network (200 Gb/s)
• 896 nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA SCALABILITY HIGHLIGHTS

0
200
400
600
800
1000
1200

128 256 512 896
G
iB
/s

Nodes

Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

6

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA SCALABILITY HIGHLIGHTS

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

7

• Exstack performance is ahead up to 64 nodes, but Chapel is ahead above that
• Exstack library and Conveyors implementation of indexgather only support a fixed number of PEs

– Conveyors can be adjusted to support more, but only determined that later

INDEXGATHER SCALABILITY HIGHLIGHTS

8

100
200
300
400
500
600
700

16 32 64

G
B/
s

Nodes (128 cores / node)

Chapel
SHMEM Exstack
SHMEM Convey

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

0
500
1000
1500
2000
2500
3000
3500
4000
4500

64 128 256 512

G
B/
s

Nodes (128 cores / node)

Chapel
SHMEM Exstack
SHMEM Convey

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

be
tt

er

• Chapel indexgather runs and scales up to 4K nodes
• Timed out gathering results, but uses same aggregators as Arkouda so expected to scale to 8K nodes as well

INDEXGATHER SCALABILITY HIGHLIGHTS

9

0

5000

10000

15000

20000

25000

512 1024 2048 4096

G
B/
s

Nodes (128 cores / node)

Chapel
SHMEM Exstack
SHMEM Convey

Bale Indexgather Performance
HPE Cray EX (Slingshot-11)

be
tt

er

• We are happy with these scalability results, but they are Arkouda/aggregation focused
• Aggregation only covers a relatively narrow set of network operations

• We wanted to take a step back and evaluate overall performance using our core benchmarks
• These cover a broader range of HPC idioms

SCALABILITY HIGHLIGHTS SUMMARY

10

PERFORMANCE BACKGROUND

Platforms

• We want benchmark results to evaluate Chapel’s performance on InfiniBand and Slingshot networks
• As well as some reference MPI/SHMEM figures to get a sense of what the hardware is capable of

• We have only been optimizing for InfiniBand and Slingshot-11 since 2020
• Prior to that, we focused on performance for Cray XC systems with the Aries network

– Intent was to ensure Chapel had the right language features/semantics first, then optimize for other networks

• Hardware has changed dramatically between XC systems and modern InfiniBand/Slingshot systems
• Typical XC was dual socket with ~36 intel cores per node and a single NIC per node

– Penalty for getting NUMA affinity wrong was relatively low (1.5-2x)

• Modern systems we’ve run on are dual socket with 128+ AMD cores or 72+ Intel cores, often with multiple NICs
– Penalty for getting NUMA affinity wrong can be quite high (~10x)
– Hard to target multiple NICs from a single process/locale

12

PERFORMANCE BACKGROUND

Co-locales

• Historically, Chapel ran with a process/locale per node, multithreading within a node
• This worked well on single-NIC systems with lower cross-socket NUMA penalties
• Especially when we could provide first-touch for large arrays on Aries systems

• Modern hardware performs best with a process per socket or even NUMA domain
• Due to high cost of getting NUMA affinity wrong and benefit of targeting multiple NICS from different processes

• Much of our recent work has been to support running Chapel with multiple processes/locales per node
• We refer to this as co-locales: co-located / cooperative locales running on the same node
• Initial work has focused on a process per socket, but have foundations to support more arbitrary mappings

• Results will include data for 1 and 2 locales per node (LPN)

13

PERFORMANCE BACKGROUND

System Configurations

• We wanted to collect core benchmark results on systems with similar per-node hardware
• Have easy access to single-NIC systems, so no multi-NIC results, but allows easier comparison between IB/SS

• Slingshot-11/InfiniBand hardware
• Dual-socket Milan (128-cores total)
• Single 200 Gbps NIC (HDR-200 and Slingshot-11)

• Historical Cray XC hardware
• Dual-socket Intel (36-cores total)
• Single Aries NIC

14

PERFORMANCE BACKGROUND

Benchmark Description

• Core Benchmarks
• Stream: No communication, NUMA affinity sensitive
• ISx: Concurrent bulk communication over wide address range, NUMA affinity sensitive
• RA: Concurrent random fine-grained communication over wide address range
• Indexgather: Concurrent bulk communication between small address range

• Arkouda argsort
• Concurrent bulk communication between small address range, some NUMA affinity sensitivity

• Unless otherwise noted, results show weak scaling (fixed problem size per node)

15

PERFORMANCE BACKGROUND

Reference Background

• Collecting reference numbers on HPE/Cray systems is straightforward
• cray-mpich and cray-openshmemx/cray-shmem are tuned and readily available
• SHMEM expects multiple NICs, might not be fully tuned for single

–Even so, still a useful comparison point to see if Chapel performance is way off

• We hit challenges collecting InfiniBand reference numbers that we could feel confident in
• No vendor-supported MPI/SHMEM implementation on the particular system we ran on

–Tried MPICH, OpenMPI and MVAPICH2 for MPI; MVAPICH2 had best performance but still seemed low
–OpenMPI was the only available SHMEM implementation, but performance was quite poor

• Opted to not include reference numbers for InfiniBand at this time

16

PERFORMANCE BACKGROUND

ARIES PERFORMANCE

Implementation Background

• We use ‘CHPL_COMM=ugni’ to target Aries
• Dynamically allocates large arrays from the OS and registers them at allocation time

–Enables first-touch for each array, provides good NUMA affinity and limits fragmentation
–Communication is fast since all memory is registered, able to achieve hardware bandwidth injection rates

• Each runtime thread has a communication endpoint
–Enables concurrent and uncontended injection, achieves hardware injection rates for small messages

• Has support for network atomics
• Uses a blocking active-message handler, avoids interference when there are no incoming AMs

• In general, our core benchmarks were competitive with or ahead of reference MPI/SHMEM codes
• Core benchmarks tested up to 256 nodes
• Previous scaling studies done up to 2048 nodes

18

ARIES PERFORMANCE

Performance Results

19

0
5000
10000
15000
20000
25000
30000

16 32 64 128 256

G
B/
s

Locales (x 36 cores / locale)

STREAM Performance (GB/s)

MPI+OpenMP
Chapel

0
2
4
6
8
10
12
14

16 32 64 128 256

G
U
PS

Locales (x 36 cores / locale)

RA Performance (GUPS)

Chapel
MPI

4
6
8
10
12
14
16
18

16 32 64 128 256

Ti
m
e
(s
ec
)

Locales (x 36 cores / locale)

ISx Time (seconds)

Chapel
SHMEM

0
100
200
300
400
500
600

16 64 128 256
G
B/
s

Locales (x 36 cores / locale)

Chapel
SHMEM Exstack
SHMEM Convey

Bale Indexgather Performance

ARIES PERFORMANCE

SLINGSHOT-11 PERFORMANCE

Implementation Background

• We use ‘CHPL_COMM=ofi’ with the cxi provider to target Slingshot-11
• Uses a fixed and statically registered heap

–Memory is interleaved across the NUMA domains that a locale is running on
–Static registration makes RDMA trivial (all memory registered at program startup)

• Supports running a process per socket
–Limits interleaving to a single socket
–Does not currently support shared memory bypass for co-located locales

• Each runtime thread has a communication endpoint
–Enables concurrent and hopefully uncontended injection (fast concurrent fine-grained communication)

• Has support for network atomics
• Uses a polling active-message handler, can cause interference even when there are no incoming AMs

21

SLINGSHOT-11 PERFORMANCE

Stream Results

• 1-locale-per-node performance is limited by the fixed heap being interleaved across sockets
• Expected locale-per-socket to achieve near peak performance (like we saw with gasnet-ibv on IceLake)

• However, additional NUMA behavior within AMD CPUs seems to limit performance
– Additionally, seeing even worse performance when using transparent huge pages (THP)

22

SLINGSHOT-11 PERFORMANCE

0
2000
4000
6000
8000
10000
12000
14000
16000

4 8 16 32 64

G
B/
s

Nodes (128 cores / node)

MPI+OpenMP
Chapel 2 LPN (no THP)
Chapel 2 LPN
Chapel 1 LPN

Stream Performance
192 GiB/node

be
tt

er

Stream Next Steps

• Investigate performance differences from transparent huge pages
• Add support for dynamic heap/registration, enabling first-touch affinity
• Add support for running with a locale per NUMA domain

• Results in ideal NUMA affinity without requiring first-touch
• But increases number of AM handlers and number of peers

23

SLINGSHOT-11 PERFORMANCE

ISx Results

• ISx performance is fairly competitive, slightly behind under 32 nodes
• Believe communication patterns are optimized, likely cause is imperfect NUMA affinity

24

SLINGSHOT-11 PERFORMANCE

0
1
2
3
4
5
6

4 8 16 32 64

Ti
m
e
(s
ec
)

Nodes (128 cores / node)

Chapel 1 LPN
Chapel 2 LPN
SHMEM

ISx Time
64 GiB/node

faster

Fine-grained Indexgather Results

• Fine-grained indexgather performance is behind SHMEM
• Root cause unknown, need to investigate

25

SLINGSHOT-11 PERFORMANCE

0
5
10
15
20
25
30
35

4 8 16 32 64

G
B/
s

Nodes (128 cores / node)

AGP
Chapel 2 LPN
Chapel 1 LPN

Bale Indexgather Performance
2 GiB/node, 2**28 requests/node

be
tt

er

Aggregated Indexgather Results

• Aggregated indexgather performance is generally ahead of SHMEM
• Chapel implementation is more asynchronous, and task-based runtime enables trivial comm/compute overlap
• Additionally, Chapel using a process per node/socket reduces number of peers, enabling fewer and larger buffers

26

SLINGSHOT-11 PERFORMANCE

0
100
200
300
400
500
600
700

4 8 16 32 64

G
B/
s

Nodes (128 cores / node)

Chapel 2 LPN
Chapel 1 LPN
Exstack
Convey

Bale Indexgather Performance
32 GiB/node, 2**32 requests/node

be
tt

er

Thread Scaling Results

• GETs have good thread scaling, but PUTs have poor scaling when using FI_INJECT
• Likely caused by some resource exhaustion; debug messages show running out of resources for FI_INJECT

– Running without inject we see better scaling, but low per-core rate

• Have some leads, but root cause is not fully understood

27

SLINGSHOT-11 PERFORMANCE

0

10

20

30

40

50

4 8 16 32 64 128

M
op
s/
s

Threads

GET

Synthetic GET Scaling
500,000 ops/thread

0

10

20

30

40

50

4 8 16 32 64 128

M
op
s/
s

Threads

PUT
No Inject PUT

Synthetic PUT Scaling
500,000 ops/thread

be
tt

er

INFINIBAND PERFORMANCE

Implementation Background

• We use ‘CHPL_COMM=gasnet’ with the ibv conduit to target InfiniBand
• Two production mechanisms for registering memory

–Segment fast (like SS-11): fixed heap, all memory is registered at program startup
Memory is interleaved
Static registration enables fast communication

–Segment large (default): fixed heap, but memory is registered at communication time in 128K chunks
Global first-touch (fixed heap results in memory reuse)
Dynamic registration in small chunks can limit communication performance

• Supports running a process per socket
–We currently disable GASNet shared memory bypass for co-located locales (would prevent blocking AM handler)

• Runtime threads share a single communication endpoint
–Serializes communication injection, hurts fine-grained communication

• Not currently utilizing the GASNet-EX remote atomic API
–And GASNet does not currently offload atomics on InfiniBand anyway

• Uses a blocking active-message handler, avoids interference when there are no incoming AMs

29

INFINIBAND PERFORMANCE

Stream Results

• Dynamic registration can achieve peak stream performance
• Static registration suffers from the same NUMA penalties as SS-11 (including THP issues)

30

INFINIBAND PERFORMANCE

0
2000
4000
6000
8000
10000
12000
14000
16000

4 8 16 32 64

G
B/
s

Nodes (128 cores / node)

Dynamic Reg 1 LPN
Dynamic Reg 2 LPN

Static Reg 2 LPN
Static Reg 1 LPN

Stream Performance
192 GiB/node

be
tt

er

ISx Results

• ISx performance suffers with dynamic registration
• Registration at comm time and 128K chunking limits bandwidth over a wide address range

• Performance with static registration is much better
• Locale per socket improves affinity and increases communication concurrency

31

INFINIBAND PERFORMANCE

0
10
20
30
40
50
60
70

4 8 16 32 64

Ti
m
e
(s
ec
)

Nodes (128 cores / node)

Dynamic Reg 1 LPN
Dynamic Reg 2 LPN

Static Reg 1 LPN
Static Reg 2 LPN

ISx Time
64 GiB/node

faster

Indexgather Results

• Indexgather is largely unimpacted by registration type
• Lots of communication, but between same addresses so dynamic registration overhead is amortized

32

INFINIBAND PERFORMANCE

0
100
200
300
400
500
600
700

4 8 16 32 64

G
B/
s

Nodes (128 cores / node)

Static Reg 2 LPN
Static Reg 1 LPN

Dynamic Reg 2 LPN
Dynamic Reg 1 LPN

Bale Indexgather Performance
32 GiB/node, 2**32 requests/node

be
tt

er

Thread Scaling Results

• GETs and PUTs have poor thread scaling
• Due to injection serialization

33

INFINIBAND PERFORMANCE

0

0.5

1

1.5

2

4 8 16 32 64 128

M
op
s/
s

Threads

GET

Synthetic GET Scaling
500,000 ops/thread

0

0.5

1

1.5

2

4 8 16 32 64 128

M
op
s/
s

Threads

PUT

Synthetic PUT Scaling
500,000 ops/thread

be
tt

er

SLINGSHOT VS INFINIBAND

Stream Results

• GASNet dynamic registration matches reference
• Static registration suffers from suboptimal NUMA affinity

35

SLINGSHOT VS INFINIBAND

0
2000
4000
6000
8000
10000
12000
14000
16000

4 8 16 32 64

G
B/
s

Nodes (128 cores / node)

MPI+OpenMP
Chapel IB Dyn 2 LPN
Chapel IB Stat 2 LPN
Chapel SS-11 2 LPN

Stream Performance
192 GiB/node

be
tt

er

ISx Results

• ISx performance is similar on InfiniBand and Slingshot-11 up to 16 nodes
• InfiniBand falling off above that, need to investigate root cause

– Reminder that InfiniBand dynamic registration (not shown) had substantially worse performance

36

SLINGSHOT VS INFINIBAND

1
2
3
4
5
6
7
8

4 8 16 32 64

Ti
m
e
(s
ec
)

Nodes (128 cores / node)

Chapel IB Stat 2 LPN
Chapel SS-11 2 LPN

SHMEM

ISx Time
64 GiB/node

faster

Indexgather Results

• Indexgather performance is similar on InfiniBand and Slingshot-11

37

SLINGSHOT VS INFINIBAND

0
100
200
300
400
500
600
700

4 8 16 32 64

G
B/
s

Nodes (128 cores / node)

Chapel SS-11 2 LPN
Chapel IB Stat 2 LPN
Chapel IB Dyn 2 LPN

SHMEM Exstack

Bale Indexgather Performance
32 GiB/node, 2**32 requests/node

be
tt

er

Random Access (RMO) Results

• Injection serialization limits fine-grained performance for gasnet-ibv
• Dynamic registration further limits performance for operations over a wide address range

38

SLINGSHOT VS INFINIBAND

0
0.0002
0.0004
0.0006
0.0008
0.001

4 8 16 32 64

G
U
PS

Nodes (128 cores / node)

SS-11 2 LPN (2**27 ops)
SS-11 2 LPN (2**21 ops)
IB Stat 2 LPN (2**21 ops)
IB Dyn 2 LPN (2**21 ops)

RA-rmo Performance
32 GiB/node

be
tt

er

Random Access (atomics) Results

• Injection serialization and lack of offloaded atomics hurts gasnet-ibv performance

39

SLINGSHOT VS INFINIBAND

0
0.0002
0.0004
0.0006
0.0008
0.001

4 8 16 32 64

G
U
PS

Nodes (128 cores / node)

SS-11 2 LPN (2**27 ops)
SS-11 2 LPN (2**21 ops)
IB Stat 2 LPN (2**21 ops)
IB Dyn 2 LPN (2**21 ops)

RA-atomics Performance
32 GiB/node

be
tt

er

Thread Scaling Results

• Serial and up to 4 thread GET rates are similar on InfiniBand and Slingshot-11
• Only higher InfiniBand thread counts start to fall off from serialization

40

SLINGSHOT VS INFINIBAND

0
0.5
1

1.5
2

2.5
3

3.5
4

2 4 8

M
op
s/
s

Threads

SS-11
IB Stat

Synthetic GET Scaling
500,000 ops/thread

0
5
10
15
20
25
30
35
40

4 8 16 32 64 128

M
op
s/
s

Threads

SS-11
IB Stat

Synthetic GET Scaling
500,000 ops/thread

be
tt

er

Arkouda Results

• For larger problem sizes, Arkouda performance is similar on InfiniBand and Slingshot-11

41

SLINGSHOT VS INFINIBAND

0
10
20
30
40
50
60
70
80
90
100

4 8 16 32 64

G
iB
/s

Nodes (128 cores / node)

SS-11 2 LPN
IB Stat 2 LPN
IB Dyn 2 LPN

Arkouda Argsort Performance
16 GiB/node

be
tt

er

Arkouda Strong Scaling Results

• For smaller problem sizes (or strong scaling) gasnet-ibv performance falls off
• Smaller transfers start seeing overhead of injection serialization
• Fewer transfers inhibits amortization of dynamic registration cost

42

SLINGSHOT VS INFINIBAND

0
5
10
15
20
25
30
35
40

4 8 16 32 64

G
iB
/s

Nodes (128 cores / node)

SS-11 2 LPN
IB Stat 2 LPN
IB Dyn 2 LPN

Arkouda Argsort Performance
16 GiB

be
tt

er

NEXT STEPS

Benchmarks

• Automate performance scaling runs using new ‘chplExperiment’ framework
• Publish scripts so users can run on their systems too

• Run additional core benchmarks and gather more reference numbers
• Collect Chapel and reference results for PRK Stencil and NAS FT
• Collect reference results for Random Access

• Collect reference numbers on InfiniBand
• Requires figuring out installs or running on a machine with vendor tuned implementations

• Run core benchmarks at higher scales
• Run core benchmarks on multi-NIC systems
• Run additional user applications like CHAMPS
• Port additional benchmarks like Bale, PRKs

44

NEXT STEPS

Slingshot-11

• Investigate and improve stream performance on transparent huge pages
• Resolve fine-grained performance thread scaling issues
• Add allocation-time dynamic registration and explore ODP
• Evaluate and tune multi-NIC performance
• Expand co-locale support to allow an arbitrary number of locales per node

• And add support for shared memory bypass
• Explore possibility of using a blocking active message handler

45

NEXT STEPS

InfiniBand

• Complete and merge code co-developed with GASNet team to upgrade to GASNet-EX API
• Minimal transliteration of existing GASNet code—does not make use of new features

• Use GASNet-EX remote atomics (ideally with more offload support from GASNet)
• Improve thread scaling by using GASNet-EX multi-endpoint API (also requires GASNet work)
• Evaluate performance of UCX conduit
• Improve registration story, preferably 1 good default instead of being application-dependent

• Ideally want either allocation time dynamic registration (with a new GASNet API to register) or ODP
–But ODP (on demand paging) requires good hardware/firmware support, which we’re not confident about

• Expand co-locale support to allow an arbitrary number of locales per node
• And enable GASNet’s existing support for shared memory bypass

–Either requires polling active-message handler or collaboration with GASNet team to only bypass GETs/PUTs

46

NEXT STEPS

THANK YOU
https://chapel-lang.org
@ChapelLanguage

