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RECENT SCALABILITY HIGHLIGHTS



• We had brief access to larger machines to evaluate performance at higher scales
• In May 2021 we had access to a 576 node HDR-100 InfiniBand machine

– Collected Arkouda argsort results

• In May 2023 we had access to an 8,192 node Slingshot-11 machine
– Collected Arkouda argsort and Bale indexgather results

• All Chapel results are with 1 process per node using a single NIC

SCALABILITY HIGHLIGHTS BACKGROUND

4



ARKOUDA SCALABILITY HIGHLIGHTS
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HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Sling114,688shot-11 network (200 Gb/s)
• 896 nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel
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• Exstack performance is ahead up to 64 nodes, but Chapel is ahead above that
• Exstack library and Conveyors implementation of indexgather only support a fixed number of PEs

– Conveyors can be adjusted to support more, but only determined that later

INDEXGATHER SCALABILITY HIGHLIGHTS
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• Chapel indexgather runs and scales up to 4K nodes
• Timed out gathering results, but uses same aggregators as Arkouda so expected to scale to 8K nodes as well

INDEXGATHER SCALABILITY HIGHLIGHTS
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• We are happy with these scalability results, but they are Arkouda/aggregation focused
• Aggregation only covers a relatively narrow set of network operations

• We wanted to take a step back and evaluate overall performance using our core benchmarks
• These cover a broader range of HPC idioms

SCALABILITY HIGHLIGHTS SUMMARY
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PERFORMANCE BACKGROUND



Platforms

• We want benchmark results to evaluate Chapel’s performance on InfiniBand and Slingshot networks
• As well as some reference MPI/SHMEM figures to get a sense of what the hardware is capable of

• We have only been optimizing for InfiniBand and Slingshot-11 since 2020
• Prior to that, we focused on performance for Cray XC systems with the Aries network

– Intent was to ensure Chapel had the right language features/semantics first, then optimize for other networks

• Hardware has changed dramatically between XC systems and modern InfiniBand/Slingshot systems
• Typical XC was dual socket with ~36 intel cores per node and a single NIC per node

– Penalty for getting NUMA affinity wrong was relatively low (1.5-2x)

• Modern systems we’ve run on are dual socket with 128+ AMD cores or 72+ Intel cores, often with multiple NICs
– Penalty for getting NUMA affinity wrong can be quite high (~10x)
– Hard to target multiple NICs from a single process/locale
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PERFORMANCE BACKGROUND



Co-locales

• Historically, Chapel ran with a process/locale per node, multithreading within a node
• This worked well on single-NIC systems with lower cross-socket NUMA penalties
• Especially when we could provide first-touch for large arrays on Aries systems

• Modern hardware performs best with a process per socket or even NUMA domain
• Due to high cost of getting NUMA affinity wrong and benefit of targeting multiple NICS from different processes

• Much of our recent work has been to support running Chapel with multiple processes/locales per node
• We refer to this as co-locales: co-located / cooperative locales running on the same node 
• Initial work has focused on a process per socket, but have foundations to support more arbitrary mappings

• Results will include data for 1 and 2 locales per node (LPN)
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System Configurations

• We wanted to collect core benchmark results on systems with similar per-node hardware
• Have easy access to single-NIC systems, so no multi-NIC results, but allows easier comparison between IB/SS

• Slingshot-11/InfiniBand hardware
• Dual-socket Milan (128-cores total)
• Single 200 Gbps NIC (HDR-200 and Slingshot-11)

• Historical Cray XC hardware 
• Dual-socket Intel (36-cores total)
• Single Aries NIC
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Benchmark Description

• Core Benchmarks
• Stream: No communication, NUMA affinity sensitive
• ISx: Concurrent bulk communication over wide address range, NUMA affinity sensitive
• RA: Concurrent random fine-grained communication over wide address range 
• Indexgather: Concurrent bulk communication between small address range

• Arkouda argsort 
• Concurrent bulk communication between small address range, some NUMA affinity sensitivity

• Unless otherwise noted, results show weak scaling (fixed problem size per node)
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Reference Background

• Collecting reference numbers on HPE/Cray systems is straightforward 
• cray-mpich and cray-openshmemx/cray-shmem are tuned and readily available
• SHMEM expects multiple NICs, might not be fully tuned for single

–Even so, still a useful comparison point to see if Chapel performance is way off

• We hit challenges collecting InfiniBand reference numbers that we could feel confident in
• No vendor-supported MPI/SHMEM implementation on the particular system we ran on

–Tried MPICH, OpenMPI and MVAPICH2 for MPI; MVAPICH2 had best performance but still seemed low
–OpenMPI was the only available SHMEM implementation, but performance was quite poor

• Opted to not include reference numbers for InfiniBand at this time
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ARIES PERFORMANCE



Implementation Background

• We use ‘CHPL_COMM=ugni’ to target Aries
• Dynamically allocates large arrays from the OS and registers them at allocation time

–Enables first-touch for each array, provides good NUMA affinity and limits fragmentation
–Communication is fast since all memory is registered, able to achieve hardware bandwidth injection rates

• Each runtime thread has a communication endpoint
–Enables concurrent and uncontended injection, achieves hardware injection rates for small messages

• Has support for network atomics
• Uses a blocking active-message handler, avoids interference when there are no incoming AMs 

• In general, our core benchmarks were competitive with or ahead of reference MPI/SHMEM codes
• Core benchmarks tested up to 256 nodes
• Previous scaling studies done up to 2048 nodes
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ARIES PERFORMANCE



Performance Results
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SLINGSHOT-11 PERFORMANCE



Implementation Background

• We use ‘CHPL_COMM=ofi’ with the cxi provider to target Slingshot-11
• Uses a fixed and statically registered heap

–Memory is interleaved across the NUMA domains that a locale is running on
–Static registration makes RDMA trivial (all memory registered at program startup)

• Supports running a process per socket
–Limits interleaving to a single socket
–Does not currently support shared memory bypass for co-located locales

• Each runtime thread has a communication endpoint
–Enables concurrent and hopefully uncontended injection (fast concurrent fine-grained communication)

• Has support for network atomics
• Uses a polling active-message handler, can cause interference even when there are no incoming AMs
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Stream Results

• 1-locale-per-node performance is limited by the fixed heap being interleaved across sockets
• Expected locale-per-socket to achieve near peak performance (like we saw with gasnet-ibv on IceLake)

• However, additional NUMA behavior within AMD CPUs seems to limit performance
– Additionally, seeing even worse performance when using transparent huge pages (THP)
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SLINGSHOT-11 PERFORMANCE
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Stream Next Steps

• Investigate performance differences from transparent huge pages
• Add support for dynamic heap/registration, enabling first-touch affinity
• Add support for running with a locale per NUMA domain

• Results in ideal NUMA affinity without requiring first-touch
• But increases number of AM handlers and number of peers
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SLINGSHOT-11 PERFORMANCE



ISx Results

• ISx performance is fairly competitive, slightly behind under 32 nodes
• Believe communication patterns are optimized, likely cause is imperfect NUMA affinity

24
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Fine-grained Indexgather Results

• Fine-grained indexgather performance is behind SHMEM
• Root cause unknown, need to investigate
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Aggregated Indexgather Results

• Aggregated indexgather performance is generally ahead of SHMEM
• Chapel implementation is more asynchronous, and task-based runtime enables trivial comm/compute overlap
• Additionally, Chapel using a process per node/socket reduces number of peers, enabling fewer and larger buffers
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Thread Scaling Results

• GETs have good thread scaling, but PUTs have poor scaling when using FI_INJECT
• Likely caused by some resource exhaustion; debug messages show running out of resources for FI_INJECT

– Running without inject we see better scaling, but low per-core rate

• Have some leads, but root cause is not fully understood
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SLINGSHOT-11 PERFORMANCE
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INFINIBAND PERFORMANCE



Implementation Background

• We use ‘CHPL_COMM=gasnet’ with the ibv conduit to target InfiniBand
• Two production mechanisms for registering memory

–Segment fast (like SS-11): fixed heap, all memory is registered at program startup
Memory is interleaved
Static registration enables fast communication

–Segment large (default): fixed heap, but memory is registered at communication time in 128K chunks
Global first-touch (fixed heap results in memory reuse)
Dynamic registration in small chunks can limit communication performance

• Supports running a process per socket
–We currently disable GASNet shared memory bypass for co-located locales (would prevent blocking AM handler)

• Runtime threads share a single communication endpoint
–Serializes communication injection, hurts fine-grained communication

• Not currently utilizing the GASNet-EX remote atomic API
–And GASNet does not currently offload atomics on InfiniBand anyway

• Uses a blocking active-message handler, avoids interference when there are no incoming AMs 

29

INFINIBAND PERFORMANCE



Stream Results

• Dynamic registration can achieve peak stream performance
• Static registration suffers from the same NUMA penalties as SS-11 (including THP issues)
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ISx Results

• ISx performance suffers with dynamic registration
• Registration at comm time and 128K chunking limits bandwidth over a wide address range

• Performance with static registration is much better
• Locale per socket improves affinity and increases communication concurrency
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INFINIBAND PERFORMANCE
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Indexgather Results

• Indexgather is largely unimpacted by registration type 
• Lots of communication, but between same addresses so dynamic registration overhead is amortized
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Thread Scaling Results

• GETs and PUTs have poor thread scaling
• Due to injection serialization
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SLINGSHOT VS INFINIBAND



Stream Results

• GASNet dynamic registration matches reference
• Static registration suffers from suboptimal NUMA affinity
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ISx Results

• ISx performance is similar on InfiniBand and Slingshot-11 up to 16 nodes
• InfiniBand falling off above that, need to investigate root cause

– Reminder that InfiniBand dynamic registration (not shown) had substantially worse performance
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Indexgather Results 

• Indexgather performance is similar on InfiniBand and Slingshot-11
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Random Access (RMO) Results

• Injection serialization limits fine-grained performance for gasnet-ibv
• Dynamic registration further limits performance for operations over a wide address range
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Random Access (atomics) Results

• Injection serialization and lack of offloaded atomics hurts gasnet-ibv performance

39

SLINGSHOT VS INFINIBAND

0
0.0002
0.0004
0.0006
0.0008
0.001

4 8 16 32 64

G
U
PS

Nodes (128 cores / node)

SS-11 2 LPN (2**27 ops)
SS-11 2 LPN (2**21 ops)
IB Stat 2 LPN (2**21 ops)
IB Dyn 2 LPN (2**21 ops)

RA-atomics Performance
32 GiB/node

be
tt

er
 



Thread Scaling Results

• Serial and up to 4 thread GET rates are similar on InfiniBand and Slingshot-11
• Only higher InfiniBand thread counts start to fall off from serialization
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Arkouda Results

• For larger problem sizes, Arkouda performance is similar on InfiniBand and Slingshot-11
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Arkouda Strong Scaling Results

• For smaller problem sizes (or strong scaling) gasnet-ibv performance falls off
• Smaller transfers start seeing overhead of injection serialization
• Fewer transfers inhibits amortization of dynamic registration cost
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NEXT STEPS



Benchmarks

• Automate performance scaling runs using new ‘chplExperiment’ framework
• Publish scripts so users can run on their systems too

• Run additional core benchmarks and gather more reference numbers
• Collect Chapel and reference results for PRK Stencil and NAS FT
• Collect reference results for Random Access

• Collect reference numbers on InfiniBand
• Requires figuring out installs or running on a machine with vendor tuned implementations

• Run core benchmarks at higher scales
• Run core benchmarks on multi-NIC systems
• Run additional user applications like CHAMPS
• Port additional benchmarks like Bale, PRKs
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Slingshot-11

• Investigate and improve stream performance on transparent huge pages
• Resolve fine-grained performance thread scaling issues
• Add allocation-time dynamic registration and explore ODP
• Evaluate and tune multi-NIC performance
• Expand co-locale support to allow an arbitrary number of locales per node

• And add support for shared memory bypass
• Explore possibility of using a blocking active message handler
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InfiniBand

• Complete and merge code co-developed with GASNet team to upgrade to GASNet-EX API
• Minimal transliteration of existing GASNet code—does not make use of new features

• Use GASNet-EX remote atomics (ideally with more offload support from GASNet)
• Improve thread scaling by using GASNet-EX multi-endpoint API (also requires GASNet work)
• Evaluate performance of UCX conduit 
• Improve registration story, preferably 1 good default instead of being application-dependent 

• Ideally want either allocation time dynamic registration (with a new GASNet API to register) or ODP
–But ODP (on demand paging) requires good hardware/firmware support, which we’re not confident about

• Expand co-locale support to allow an arbitrary number of locales per node
• And enable GASNet’s existing support for shared memory bypass

–Either requires polling active-message handler or collaboration with GASNet team to only bypass GETs/PUTs
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