
CHAPEL 1.31/1.32 RELEASE NOTES:
DYNO UPDATES

Chapel Team
June 22, 2023 / September 28, 2023

OUTLINE

• Background and Goals
• Summary of Progress since 1.30
• Details of Progress since 1.30
• Goals for 1.33 and 1.34
• Other Dyno Improvements

BACKGROUND AND GOALS

• Dyno is an ongoing effort to address problems with the Chapel compiler
• Focused on improving:

• Speed
• Error messages
• Compiler architecture and program representation
• Compiler development

• Recent work has focused on:
• Supporting the Chapel 2.0 effort
• Replacing the early compilation passes with incremental versions, including an incremental resolver
• Building better IDE support
• Factoring the compiler into multiple processes coordinated by a compiler driver

4

COMPILER REWORK EFFORT

Faster Compilation with an Incremental Compilation Front-end
• Only re-parse and do type resolution based on files that were edited

– Could result in reducing compilation time
– Type resolution is one of the most time-consuming parts of compilation today

• Will still have the whole-program optimization and code-generation back-end

Faster Compilation with Separate Compilation
• Make most of the optimizations happen per-file
• Will need a linking step for optimizations like function inlining that span files
• Should result in significantly faster compilation times

5

COMPILER REWORK DELIVERABLES (1/2)

Dynamic Compilation and Evaluation
• Enable Chapel code snippets to be written and run interactively

– e.g., in Jupyter notebooks

Reduced Memory Usage
• Using a compiler driver approach allows all compilation memory to be reclaimed before the link phase
• Should address out-of-memory errors when compiling large Chapel programs

6

COMPILER REWORK DELIVERABLES (2/2)

SUMMARY OF PROGRESS SINCE 1.30

1. Frontend Integration & Improving New Resolver
• Goal: able to disable production scope resolver by 1.31

– Enabled Dyno scope resolver in 1.31, though still relying on the production resolver for a few corner cases

• Goal: new type resolver works in opt-in mode for end-to-end compilation for most tests by 1.32
– Slipped due to reallocation of resources towards the Chapel 2.0 effort

2. Separate Compilation
• Goal: Demonstrate saving generated code for a concrete function in the library files by 1.32

– Slipped due to reallocation of resources towards the Chapel 2.0 effort

3. Incremental Compilation
• Goal: Demonstrate live scope resolution from an editor by 1.31

– Achieved for 1.32 with the Language Server Protocol effort

4. Compiler Driver
• Goal: Get opt-in compiler driver support merged for 1.31

– Achieved in 1.32 and available with ‘--compiler-driver’

8

SUMMARY OF PROGRESS TOWARDS 1.31 AND 1.32 GOALS

• Created a Python interface to the compiler library to help with Chapel 2.0 efforts
• Demonstrated it with two prototype tools:

• a code rewriter (to help migrate existing tests and applications)
• a linter (designed to check that the standard modules follow the style guide)

Note: Many of the changes discussed in the Language deck were motivated by Dyno compiler efforts
• Generally, sought to reduce the complexity both for the compiler implementation and for users

9

SUMMARY OF OTHER PROGRESS

DETAILS OF
PROGRESS SINCE 1.30

• Scope Resolution
• Type and Call Resolution
• Chapel Language Server
• Compiler Driver Mode
• Using the Compiler Library in Python

SCOPE RESOLUTION

• Scope resolution is the process of matching identifiers with declared symbols
• For example, in the following code, the ‘arg’ being printed refers to the ‘arg: string’ formal

 proc printArg(arg: string) {
 writeln(arg);
 }

• In 1.30, the Dyno scope resolver was functional but not yet enabled in production

• ‘extern’ blocks enable working with C code in a streamlined manner
• they also interact with scope resolution, e.g., to figure out what ‘g’ refers to in the following snippet

extern {
 int g;
}
writeln(g);

12

SCOPE RESOLUTION: BACKGROUND

This Effort:
• Enabled the Dyno scope resolver’s use in production

– caveat: still leaning on production scope resolver to handle gaps in implementation

• Fixed a few bugs uncovered by production use of the new scope resolver
• Added reasoning about extern blocks to the Dyno scope resolver

– works with ‘clang’ precompiled header files
– an interesting first case of using an external tool to support a Dyno query

Next Steps:
• Identify and fix gaps in the Dyno scope-resolver that are currently handled by the production scope resolver
• Disable the production scope resolver in favor of the Dyno scope resolver

13

SCOPE RESOLUTION: THIS EFFORT AND NEXT STEPS

TYPE AND CALL RESOLUTION

• Resolving includes resolving types and resolving calls
 var x = "hello"; // resolving a type: determine that ‘x’ has the type ‘string’

 f(1); // resolving a call: determine that ‘f(1)’ calls ‘f’ below
 proc f(arg: int) { }

• Resolution implements a large part of Chapel’s semantics
• It is also one of the major bottlenecks in the production compiler

• A new incremental resolver is part of the Dyno effort

• Past approach: get a draft of each major component in order to:
1. Raise language design issues before language stabilization
2. Demonstrate integration of all resolver components in the new resolver effort

• Goal: replace production resolver and scope resolver with new Dyno resolver

15

RESOLVING TYPES AND CALLS: BACKGROUND

• Currently have draft implementations for the major features required for the resolver:
– progress since April 2023 in bold — many of these need more work

16

RESOLVING TYPES AND CALLS: STATUS

• generic instantiation
• implicit conversions
• tuple types
• type construction
• varargs functions
• loop index variables
• param loops
• enums
• method calls
• function disambiguation
• ‘?t’ in formals
• caching of instantiations
• compiler-generated functions

• fields
• parenless methods
• split init
• copy elision
• task/loop intents
• initializer bodies
• split init and copy elision
• operator overloads
• reductions
• task/loop intents
• const checking
• return intent overloading
• ref-if-modified for e.g. arrays

• generating calls e.g. ‘deinit’
• error types for ‘catch’
• arrays & domains
• try / throws checking
• reflection

• arrays and domains
• ‘new R()’ runs ’R.init()’
• ‘forwarding’
• param folding
• return type inference
• opaque ‘extern’ types
• ‘class’ typeclass

CHAPEL LANGUAGE SERVER

Background: A language server enables editors to reason about code written in that language
• powers code completion, error reporting, 'go to declaration’, as well as other features
• many implement the Microsoft Language Server Protocol

This Effort: Started development of a Chapel language server
• works with the Language Server Protocol
• demonstrates the usefulness of the compiler library

Status: An initial implementation is included in the 1.32 source release

• The 'go to declaration' feature is implemented

Next Steps: Further develop the language server
• Add tests and new features such as error reporting
• Get feedback from early adopters

18

CHAPEL LANGUAGE SERVER

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/

COMPILER DRIVER MODE

Background: The Chapel compiler mostly runs as a single process responsible for all compilation stages
• Memory allocated early in compilation (e.g., the AST) unnecessarily remains during later stages
• Previously, we began prototype work on a compiler driver mode

– In this mode, ‘chpl’ acts as a thin wrapper running different compilation stages as subprocesses

• Potential benefits include:
– Reduced memory pressure
– Convenient method of running or debugging just some parts of compilation
– Looser coupling of compiler code

This Effort: Completed prototype
• Added opt-in compiler driver mode via ‘--compiler-driver’ flag
• Driver work is organized into two phases (diagram)

– ‘Phase one’ does compilation through code generation
– ‘Phase two’ does assembly and linking to generate an executable/library

20

COMPILER DRIVER MODE: BACKGROUND AND THIS EFFORT

phase one

phase two

chpl --compiler-driver

C/LLVM code

Chapel code

binary output

Status: Compiler driver mode is considered experimental at this point
• ‘--compiler-driver’ is usable and passes tests with C or LLVM backend
• Works with GPU codegen, but does everything in first compilation stage
• No performance testing results yet

Next Steps:
• Get nightly testing for compiler driver mode on par with default mode
• Refactor implementation to improve code quality
• Integrate properly with GPU backend
• Gather performance data, particularly memory usage of ‘chpl’
• Eventually, switch to using compiler driver mode by default, with a transitional opt-out flag

21

COMPILER DRIVER MODE: STATUS AND NEXT STEPS

USING THE COMPILER LIBRARY IN
PYTHON SCRIPTS

Background:
• The Dyno effort exposes the front-end’s functionality as a C++ library
• This is intended for building language tools (chpldoc, language server)
• However, using the C++ API comes with costs and barriers to starting a new project

– Need to add source files to build system, configure include paths, etc.
– Requires lower-level code (memory management, etc.)
– C++’s library ecosystem is not as rich as Python’s; there’s no standard package manager

This Effort:
• Wrap the front-end library in a CPython module to expose some functionality to Python programs

– Currently, only AST information (not scope resolution or function resolution)

• Simple tools can be made to work with very little effort
• Created two proof-of-concept tools — a linter and a code replacer

23

COMPILER LIBRARY IN PYTHON: BACKGROUND AND THIS EFFORT

• Using Python, wrote a linter in ~100 lines of code
• Linter supports warnings that may be stylistic or non-universal

• Incorrect capitalization of types and variables
• ‘for’ loop with both ’do’ and ‘{‘
• nested ‘coforall’ statements

• Example rule for nested ‘coforall’s:
• For each ‘coforall’ node, searches upward to see if it has another ‘coforall’ node parent

def check_nested_coforall(node):
 parent = node.parent()
 while parent is not None:
 if isinstance(parent, Coforall):
 return False
 parent = parent.parent()
 return True

24

COMPILER LIBRARY IN PYTHON: IMPACT — LINTER

• Using Python, implemented a tool for syntax-aware code modification
• Can be used to help migrate deprecated features to their new equivalents
• Applicable in complex cases not amenable to naïve search–and-replace

• Used this tool to add ‘serializable’, ‘writeSerializable’, etc. to ~150 tests automatically
• Python code rewriting scripts are short, reproducible, and can be shared with users to aid migration

25

COMPILER LIBRARY IN PYTHON: IMPACT — CODE REWRITER

Status:
• Python wrapper merged into Chapel codebase
• Can be installed from source to develop new tools

Next Steps:
• Improve how the Python module is distributed
• Include the Python-based tools (linter, rewriter) in the next Chapel release
• Expose more of the Dyno library through the Python bindings to allow more powerful tools
• Consider providing code rewriter scripts in future releases to help with updates to user codes

26

COMPILER LIBRARY IN PYTHON: STATUS AND NEXT STEPS

DYNO GOALS FOR 1.33 AND 1.34

Dyno development will work toward these goals:

1. Integrating New Resolver (supporting faster compilation)
– Goal: replace the production type resolver by 1.34

2. Separate Compilation (supporting faster compilation)
– Goal: Demonstrate saving generated code for a concrete function in the library files by 1.34
– Goal: Demonstrate adjustments to an existing production compiler pass to support separate compilation by 1.34

3. Compiler Driver (reducing memory requirements when compiling)
– Goal: Move compiler driver to production default instead of opt-in only by 1.33

4. Demonstrate the Compiler Library (improved interactivity)
– Goal: Get the Language Server Protocol support ready for users by 1.34
– Goal: Support library stabilization with Python tooling and a linter by 1.33

28

SUMMARY OF DYNO GOALS FOR 1.33 AND 1.34

OTHER DYNO IMPROVEMENTS

For a more complete list of Dyno changes and improvements in the 1.31 and 1.32 releases, refer to
the following sections in the CHANGES.md file:

• Developer-oriented changes: 'dyno' Compiler improvements/changes

30

OTHER DYNO IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.32/CHANGES.md
https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

